All BGRI Abstracts

Displaying 41 - 50 of 415 records | 5 of 42 pages

High yielding bread wheat cultivar Alaa with potential to retard rust spread in rain-fed and irrigated zones of Iraq

BGRI 2018 Poster Abstract
Emad Al-Maaroof Sulaimani University,IKR, Iraq

Rusts continue to cause significant losses in grain yield of wheat in Iraq. Substitution of susceptible cultivars with resistant ones is an important step in reducing the vulnerability of the wheat crop. The present study represents a breeding program to develop high yielding bread wheat cultivars with resistance to brown rust and yellow rust. The performance of 265 spring wheat genotypes representing an international bread wheat-screening nursery from CIMMYT were evaluated in different agro-ecological zones in comparison with local commercial cultivars. Adult plant stage screening of the materials for brown rust and yellow rust reaction under inoculated conditions for three successive seasons identified 29 resistant and 59 moderately resistant genotypes, and 79 genotypes out-yielded the local cultivars. The selected lines were comprehensively evaluated for grain yield potential and disease response in different locations and agro-systems. Among 13 genotypes line 172 was selected for higher grain yield than local commercial cultivars in the presence and absence of both diseases. Mean coefficients of infection on line 172 were 0.57 and 5.35 to brown rust and yellow rust, respectively. It was also moderately resistant to common bunt. Yield potential of the new cv. Alaa was 9-20% higher than the commercial local cultivars Araz, Tamuz 2 and Adana. Alaa was registered and released by the National Committee for Registration and Release of Agricultural Cultivars according to order no. 39, 30/10/2017 as a new cultivar with high yield potential and resistance to brown rust and yellow rust. Great emphasis was made on multiplication and delivery of seeds to farmers. Grain yield potential of Alaa on a farm scale is 3,372 Kg/ha under rain-fed conditions and 5,024 Kg/ha under irrigated conditions.

Tags:

Molecular screening of stem rust resistance genes Sr11, Sr26 and Sr31 in wheat genotypes of Azerbaijan

BGRI 2018 Poster Abstract
Samira Rustamova Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences
Shahriyar Sadigov, Alamdar Mammadov, Irada Huseynova

Rust of cereals are considered to be an important disease in many countries, including Azerbaijan. One of these is stem rust caused by Puccinia graminis f. sp. tritici (Pgt). Extensive research on the identification of wheat stem rust resistance genes and effectiveness of these genes in various geographical regions have been conducted. Genetic resistance is one of the most effective ways for controlling stem rust. Sixty-nine stem rust resistance genes (including 45 identified Sr genes and 24 genes with temporary designations) are registered in the Komugi Wheat Genetics Resource Database. It is important to use proper combinations of resistance genes in developing lasting resistance wheat. The main purpose of the study was to identify lines caring Sr11, Sr26 and Sr31 genes, which are effective to the predominant Pgt races in Azerbaijan. Durum and bread wheat genotypes differing in their disease resistance, productivity and other physiological traits were chosen from the wheat gene bank of the Research Institute of Crop Husbandry (Baku, Azerbaijan) for analysis. DNA extraction was carried out according to standard CTAB protocol. RT-PCR performed using KASP markers (KASP_6BL_BS0074288_51 and KASp_6BL_Tdurum contig55744_822) identified nine durum genotypes (out of 34 genotypes) and seven wheat genotypes (out of ten genotypes), caring Sr11. Using the dominant STS marker (Sr26#43) a diagnostic 207 bp amplicon for Sr26 gene, was observed in 11 of the 42 wheat genotypes tested. In eight of the 42 wheat genotypes tested, the diagnostic 1,110 bp amplicon was observed using the Lr26-Sr31-Yr9 locus specific marker iag95, characteristic of Sr31 gene located at 1BL.1RS translocation. For the first time, wheat germplasm in Azerbaijan was analyzed using KASP genotyping technology and genetic resources, and resulted in the identification of wheat lines with effective resistant to Puccinia graminis f. sp. tritici race TKTTF.

Tags:

Epidemics of stripe (yellow) rust on wheat and triticale fields of Algeria in 2016.

BGRI 2018 Poster Abstract
Nora DERBAL Laboratoire de Biologie, Eau et Environnement, département d'écologie,university of 8 mai1945 Guelma, Algeria
Abdelkader Benbelkacem

Epidemics of stripe (yellow) rust on wheat and triticale fields of Algeria in 2016. Wheat and triticale fields in 69 localities from the eastern regions of Algeria were assessed for epidemics, which started in early march to late may corresponding to booting stage up to early dough stage of the alternative type crop. The infection had incidences ranging from 30 to 100% and severities of 30 to 70%. The newly released cultivar Ksar sbahi was infected up to 10%. The old improved durum cultivars HAR3116 (SHA7/KAUZ) and HAR1407 (COOK/VEES//DOVES) were rust-free at a number of locations. In the Amhara region, the wheat cultivars were at stem elongation to flowering with disease incidences of 50-100% and severities of 30-90%. The oldest cultivar ET 13 A2 was severely infected in the north Shewa zone of Amhara region. Triticale cultivar Logaw Shibo was susceptible at elevations above 2700 m and showed trace reactions at elevations below 2500 m. The local bread wheat cultivar grown in all wheat growing areas was only slightly affected by the disease. Yellow rust was rarely recorded in the Tigray region. Severe epidemics were recorded in the highlands and even at lower elevations where it is not commonly found on wheat.

Tags:

Mapping and validation of stripe rust resistance loci from wheat cultivar Centrum with SNP markers

BGRI 2018 Poster Abstract
Jingmei Mu State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, P. R. China
Qilin,Wang, Jianhui, Wu, Qingdong, Zeng, Lili, Huang, Dejun, Han, Zhensheng, Kang, , , , , , , , , , , , , , , , , ,

The combination of several additive, partial resistance genes has been proposed as a preferred strategy to breed wheat cultivars with acceptable levels of durable resistance. The German winter wheat cv. Centrum has displayed high levels of adult plant stripe rust resistance (APR) in field environments for many years. One hundred and fifty one F2:7 RILs were developed from a cross between susceptible landrace Mingxian169 and Centrum to determine the inheritance of the APR resistance. The RILs and parents were evaluated for maximum disease severity (MDS) in the field during the 2015-2016 and 2016-2017 cropping seasons. Affymetrix 35K single nucleotide polymorphism (SNP) arrays were used to genotype the RILs and parents. In addition, the 660K SNP array was used to genotype bulked extreme pools and parents for saturation mapping. Four stable QTL were detected in all tested environments using inclusive composite interval mapping (ICIM); namely QYrCEN.nwafu-4AL, QYrCEN.nwafu-4BS, QYrCEN.nwafu-7BL, and QYrCEN.nwafu-7DS. QYrCEN.nwafu-4BS and QYrCEN.nwafu-7DS were contributed by MX169, QYrCEN.nwafu-4AL and QYr-CEN.nwafu-7BL were contributed by Centrum. QYrCEN.nwafu-7BL and QYrCEN.nwafu-4AL appear to represent new APR loci based on map comparisons. QYrCEN.nwafu-4BS contributed by MX169 also seems to represent a new locus. QYrCEN.nwafu-7DS is likely Yr18. Although MX169 was fully susceptible in our nurseries it is positive for the widely used marker csLV34. Reference lines carrying Yr18 are moderately resistant. Our hypothesis is that MX169 probably carries the inhibitor reported in Chinese landrace varieties by Wu et al. (2015, Plant Breeding 134: 634-640). SNP markers within these QTL were converted to KASP markers and validated in a subset of 120 diverse lines. These KASP markers should be useful for marker-assisted selection to improve stripe rust resistance in breeding programs.

Tags:

Changes of some physiological parameters of different wheat genotypes in ontogenesis depending on infection of leave level

BGRI 2018 Poster Abstract
Javanshir Talai Research Institute of Crop Husbandry, Azerbaijan
ATIF,ZAMANOV, Konul, Aslanova, , , , , , , , , , , , , , , , , , , , , , , , , ,

Rust diseases are considered the main stress factors that limit wheat productivity in the Azerbaijan. The studies on the impact of rust diseases on physiological processes at reproductive vegetation period is of very importance with view of evaluating size of yield and quality of the studied genotypes. For this purpose the studies focused on bread wheat genotypes (Triticum aestivum L.), which differ sharply by architectonics, biological peculiarities and resistance to rust diseases. Comparative evaluation of the studied genotypes by physiological and quality parameters has been undertaken in two options: over plants infected with diseases in natural background, and over healthy plants (fungicide sprayed plants). Area of photosynthesis apparatus of leaf story (18,3-50,2 sm2) of the studied wheat genotypes changes in wide interval. Infestation level of leaves with yellow rust (Puccinia striiformis West.) in wheat genotypes grown in natural infection background fluctuates between 5MS-40S in ontogenesis, but between 10MS-90S with brown rust (Puccinia recondita Desm.).
High level of infection with rust diseases leads to reduced size of leaf assimilation area and defoliation. Reduction of these dimensions makes up 10-90% in lower story leaves of genotypes infected with rust diseases, but 20-30% in upper story leaves. Genotypes with large and bending leaves subject to this disease more frequently. Value of photosynthesis intensity in ontogenesis at upper story leaves of the genotypes infected with rust diseases at natural background fluctuates between 6-18 ?mol CO2 .m-2.s-1 depending on level of infection, but in healthy plants between 16-29 ?molCO2 .m-2.s-1. Negative impact of these diseases on normal course of plant physiological process ultimately causes is reflected in yield and quality parameters.

Tags:

Characterization of wheat germplasm for leaf rust resistance using molecular markers and multi-location field testing

BGRI 2018 Poster Abstract
Muhammad Ismail The University of Agriculture, Peshawar, Pakistan
Muhammad Khan, Aamir Iqbal, Sher Nawab, Sohail Ahmed, Muhammad Imtiaz, Sajid Ali

Resistance breeding for wheat leaf rust requires testing of breeding materials under field conditions, which must be complemented with diagnostic molecular makers. A set of 28 exotic wheat lines from advanced CIMMYT material along with three check varieties (Siran, Atta-Habib, Ghanimat-e-IBGE) were tested at three contrasting locations (Peshawar, Mansehra and Lakki-Marwat) and were genotyped with markers linked to three Lr genes (LrPr, Lr37, and Lr34). The overall leaf rust pressure was low during the wheat season of 2015-16, with the maximum disease observed at Lakki-Marwat (up to 70%), followed by Peshawar (up to 50%) and the minimum disease at Mansehra (up to 30%). Despite the overall low leaf rust pressure, the germplasm behaved variably in terms of leaf rust resistance as revealed through average co-efficient of infection (ACI). According to ACI value, 16 out of 28 genotypes were completely resistant, while few genotypes showed partial resistance. The maximum CI value was recorded for wheat line W-SA-87, which was 55 at Lakki Marwat, 33 at Peshawar and 15 at Mansehra, while 18 lines had CI value of zero across the three locations. Variability existed in yield parameters with W-SA-84, W-SA-78 and W-SA-79 producing the better grain yield. Genotyping with Lr linked markers viz., STS-7 (LrPr), SC-Y15 (linked with Lr37) and csLV34 (linked with Lr34) revealed that among the tested lines LrPr was the most frequent (83.8%), present in 26 lines; followed by Lr37 (77.4%), present in 24 lines, while Lr34 was present in 16 lines (71.1%). All three genes were detected in 45% of the germplasm. Cluster analysis grouped the germplasm in four clusters based on both phenotypic and molecular markers data. The information generated in the present study would be valuable in resistance breeding for a better control of leaf rust disease in Pakistan.

Tags:

MicroRNAs and their mega effects on gene expression in response to leaf rust in wheat (Triticum aestivum L.)

BGRI 2018 Poster Abstract
Summi Dutta Department of BioEngineering, Birla Institute of Technology, Mesra, Ranchi, India
Manish Kumar, Kunal Mukhopadhyay

Bread wheat (Triticum aestivum L.) being the world's most popular edible cereal, plays a major role in global economy. Rust in wheat leaves, caused by Puccinia triticina, affects grain quality and severely retards its production worldwide. Micro(mi)RNAs are considered major components of gene silencing and so have a great role to play during stress. The present study focuses on identification of miRNAs, produced by host to suppress pathogen as well as delivered by pathogens to encounter host defence mechanism. Therefore, these miRNAs may be called as leaf rust responsive microRNAs. Small RNA and degradome libraries were prepared from a pair of near isogenic lines of wheat (HD2329, HD2329+Lr24), one set was mock inoculated while the other set was inoculated with urediniospores of leaf rust pathogen. Using these libraries as input a vast number of miRNAs rather a population of miRNAs were identified derived from wheat that were targeting genes mostly involved in functions like defense response, signal transduction, development, metabolism, and transcriptional regulation.
When reads specifically produced under pathogen inoculation were taken as input with Puccinia triticina genome sequences as reference, only three putative miRNA precursor loci were detected and the molecules produced were called miRNA-like molecules as their precursors lacked one or two criteria essential for a true miRNA precursor. The identified miRNAs were targeting genes like F-box protein, MAP kinase, calmodulin and susceptible antioxidant protein. We further identified the presence of argonaute and dicer like domains in Puccinia proteome available at FungiEnsembl which strengthens presence of RNAi-like activities in Puccinia.
In addition, differential expression of wheat as well as Puccinia small RNAs using stem loop RT-PCR under varying time points of disease progression (0-168 hpi) revealed their direct connection with stress responses.

Tags:

Survey of wheat stem rust Puccinia graminis f. sp. tritici in Jordan

BGRI 2018 Poster Abstract
Kholoud Alananbeh The University of Jordan
Ayed Al Abdallat, Monther Tahat

Studies on whet stem rust (WSR) in Jordan are considered to be old. There was only one study conducted in the late 1980's by Abu-Blan and Duwayri (1989) to evaluate the infection of wheat cultivars with black stem rust disease (Puccinia graminis f. sp. tritici). Recently, reports of stem rust were published in Israel and Lebanon in 2010 and first report of Ug99 was reported in Egypt in 2014. The objectives of our research are to: (i) survey wheat growing areas for WSR in Jordan during the years 2017-2020, (ii) identification of WSR races isolated from Jordan morphologically and molecularly, (iii) analyze rust populations in terms of their response to known differential sets, pathotype distribution and diversity, (iv) screening the response of Jordanian wheat germplasm to the identified WSR strains, and (vi) study the population diversity of WSR races using RT-PCR and SNP genotyping. In 2017 a total of 270 fields of wheat and barley in the wheat and barley growing areas in Jordan were surveyed from March-May. The survey covered northern, middle, and southern parts of Jordan (arid and semi-arid regions). Altitude, longitude, and latitude data was recorded. Only few WSR pustules (n=4) were collected because the environmental conditions were not suitable for the disease to develop. On the other hand, wheat stripe rust was very common in the wheat growing areas mainly at the southern parts of the country. Other fungal plant pathogens were also reported including smuts, spots, blotches, powdery mildew, crown rot, fusarium head blight, and flag smut.

Tags:

Genetic analysis for yield and its components in Afghan bread wheat

BGRI 2018 Poster Abstract
Mohammad Bahman Sadeqi Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-University of Bonn
Mohammad Wali,Salari, Kobra, Yusefi, Mohammad, Yusefi, Gul Mohammad, Ajir, Wakil Ahmad, Sarhadi, Jens, L?on, , , , , , , , , , , , , , , , , ,

Bread wheat is a staple food in Afghanistan. Breeding for improving yield and its components in Afghan bread wheat without using new molecular methods such as marker-assisted selection (MAS) and quantitative trait loci (QTL) mapping approaches is difficult. Therefore study of genetic analysis by focus on yield and its components as first steps is necessary. Genetic analyses were performed on a winter wheat core collection of 20 accessions and commercial varieties sampled from different regions of Afghanistan and twenty agronomic traits were evaluated over three years under fully irrigated, rain-fed and drought treatments. Grain yield was the most important trait to water deficit and was highly correlated with other agronomic traits. The germplasm was structured into two sub-populations. Field plots of the genotypes were treated to one of three treatments including full irrigation, rain supplied and rain-sheltered. A randomized complete block design with three replicate was used every year of the trial. For every agronomic trait, variance components, heritability (h2) and genetic correlations was calculated. Results of the study showed that these genotypes may be good source for national breeding programs. The multiple statistical in this study showed that results of genetics correlation and regression analysis are same. Further analysis of these traits with additional experimental data to attain persuasive conclusion is suggested.

Tags:

Wheat rusts status and population structure across Pakistan during wheat growing seasons 2015-16 and 2016-17

BGRI 2018 Poster Abstract
Sajid Ali The University of Agriculture, Peshawar, Pakistan
Muhammad,Khan, Safi, Kathi, Zahoor, Swati, Manzoor, Hussain, Annemarie, Justesen, Muhamamd, Imtiaz, , , , , , , , , , , , , , , , , ,

Considering the importance of wheat rust diseases in Pakistan and the recent identification of yellow rust pathogen (Puccinia striiformis f. sp. tritici) centre of diversity in Pakistan, the present study was designed to assess the status of three wheat rusts across the country during 2015-16 and 2016-17 and analyze the population structure of P. striiformis f. sp. tritici . A total of 451 fields (from 68 districts) were surveyed during 2016 and 480 fields (from 69 districts) during 2017. A high yellow rust pressure was present during 2016 throughout Pakistan, while it was predominant only in the Northern half during 2017. Leaf rust was present in the central part of the country, while stem rust was only found in the south. In Sindh province (located in the south), yellow rust was reported unexpectedly with high severity (>60%) on varieties like Kiran and Galaxy during both the years. A set of 513 samples of P. striiformis were genotyped with microsatellite markers to assess the population diversity and spatial structure. and infer on the cause of epidemics in the Sindh province. Population genetics analyses confirmed a recombinant population structure across all locations except the Sindh province, where relatively lower diversity and lack of recombination signature was revealed. At least five genetic groups were identified in the overall population, which were found across all locations, except Sindh province where one of the genetic groups was predominant. The P. striiformis population from Sindh province with low diversity that caused unexpected epidemics in a relatively warmer region needs to be further investigated for specific adaptation traits. Our results confirmed the high diversity across Pakistan, which lies in the Himalayan centre of diversity of the pathogen. This high diversity was present in locations without the presence of alternate host (Berberis spp.) and could potentially be associated with regular migrants from the Berberis zone into the whole country.

Tags:

Pages