All BGRI Abstracts

Displaying 291 - 300 of 415 records | 30 of 42 pages

International surveillance of wheat rust pathogens - progress and challenges

BGRI 2010 Plenary Abstract
Robert Park The University of Sydney, Plant Breeding Institute, Australia
Tom Fetch, Dave Hodson, Yue Jin, Kumarse Nazari, Mohinder Prashar, and Zacharias Pretorius PDF icon View park_2010.pdf (263.01 KB)

Surveillance of wheat rust pathogens, including assessments of rust incidence and virulence characterization via either trap plots or race (pathotype) surveys, has provided information fundamental in formulating and adopting appropriate national and international policies, investments and strategies in plant protection, plant breeding, seed systems, and in rust pathogen research. Despite many successes from national and regional co-ordination of rust surveillance, few attempts were made to extend rust surveillance to international or even global levels. The Global Cereal Rust Monitoring System was established to address this deficiency. It is underpinned by an information platform that includes standardized protocols for methods and systems used in surveys, preliminary virulence testing, data, sample transmission and management at the field and national and global levels, and includes two web-based visualization tools. While considerable progress has been made towards a global system for monitoring variability in the wheat stem rust pathogen, and linking this to the threat posed by this pathogen to regional wheat production, some challenges remain, including ongoing commitment to support rust surveillance, and the ability to share and compare surveillance data.

Tags:

Global status of stripe rust

BGRI 2010 Plenary Abstract
Colin Wellings The University of Sydney, Plant Breeding Institute, Australia
PDF icon View wellings_2010.pdf (283.25 KB)

Stripe rust, caused by Puccinia striiformis, has been an important disease of wheat, barley, rye, triticale and certain graminaceous hosts for centuries. The significance of the disease on cultivated cereals has waxed and waned according to the vagaries of climate, inoculum levels and susceptible varieties. A progressive understanding of pathogen biology has revealed levels of specialisation between and within host groups, and these had varying impacts on the hosts concerned. The most economically important form is P. striiformis f. sp. tritici (Pst), the causal pathogen of stripe (yellow) rust of wheat, which is the major focus of this paper. The recent discovery of the perfect stage of Pst on Berberis spp. will encourage further work to uncover the potential importance of the sexual stage in pathogen biology in regions where Berberis spp. occur. A review of the evolution of pathotypes within Pst over the past 50 years reveals recurrent pandemics emanating from a combination of specific virulence in the pathogen population, wide scale cultivation of genetically similar varieties, and agronomic practices that led to high yield potential. When these factors operate in concert, regional stripe rust epidemics have proven to be dramatic, extensive and serious in terms of the magnitude of losses and the economic hardships endured. A review of these epidemics suggests that little progress has been made in containing the worst effects of epidemics. The current status of stripe rust was gauged from a survey of 25 pathologists and breeders directly associated with the disease. It was evident that Pst remains a significant threat in the majority of wheat growing regions of the world with potential to inflict regular regional crop losses ranging from 0.1 to 5%, with rare events giving losses of 5 to 25%. Regions with current vulnerability include the USA (particularly Pacific North West), East Asia (China north-west and south-west), South Asia (Nepal), Oceania (Australia) and East Africa (Kenya). The resources deployed to contain the worst effects of Pst will need to find a balance between training a new generation of breeders and pathologists in host-pathogen genetics, and an investment in infrastructure in IARCs and NARs.

Tags:

Genetic protection of wheat from rusts and development of resistant varieties in Russia and Ukraine

BGRI 2010 Plenary Abstract
Alexey Morgounov CIMMYT-Turkey
I. Ablova, O. Babayants, L. Babayants, L. Bespalova, Zh. Khudokormov, N. Litvinenko, V. Shamanin, and V. Syukov PDF icon View morgunov_2010.pdf (677.32 KB)

Leaf rust represents the major threat to wheat production in Russia and Ukraine. It has been present for many years and epidemics occur in different regions on both winter and spring wheat. In some regions there is evidence of more frequent epidemics, probably due to higher precipitation as a result of climate change. There is evidence that the virulence of the leaf rust population in Ukraine and European Russia and on winter wheat and spring wheat is similar. The pathogen population structure in Western Siberia is also similar to the European part, although there are some significant differences based on the genes employed in different regions. Ukrainian wheat breeders mostly rely on major resistance genes from wide crosses and have succeeded in developing resistant varieties. The North Caucasus winter wheat breeding programs apply the strategy of deploying varieties with different types of resistance and genes. This approach resulted in decreased leaf rust incidence in the region. Genes Lr23 and Lr19 deployed in spring wheat in the Volga region were rapidly overcome by the pathogen. There are continuing efforts to incorporate resistance from wild species. The first leaf rust resistant spring wheat varieties released in Western Siberia possessed gene LrTR which protected the crop for 10-15 years, but was eventually broken in 2007. Slow rusting is being utilized in several breeding programs in Russia and Ukraine, but has not become a major strategy.

Tags:

Association mapping of rust resistance in pre-green revolution wheat accessions

BGRI 2010 Poster Abstract
Urmil Bansal The University of Sydney, Plant Breeding Institute, Australia
Vivi Arief, Hanif Miah, Ian H DeLacy, and Harbans S Bariana

Association mapping detects correlations between genotypes and phenotypes in a sample of individuals based on the linkage disequilibrium and can be used to uncover new genetic variation among germplasm collections. Two hundred and five landraces collected by the English botanist A. Watkins in the 1920s were screened for rust response variation under field conditions during three crop seasons. An integrated map of 350 polymorphic DArT markers was developed. Association mapping identified the involvement of several genomic regions in controlling resistance to three rust diseases. Seven, eight and nine genomic regions, respectively, appeared to carry yet uncharacterized leaf rust, stripe rust and stem rust resistance. Three dimensional analyses indicated genetic association of leaf rust and stripe rust resistance in some accessions, whereas no such association was observed between stem rust resistance and resistance to either of the other two rust diseases. A new stripe rust resistance locus, Yr47, has been named. 

Tags:

Genetic map of stem rust resistant gene Sr35 in T. monococcum

BGRI 2010 Poster Abstract
W. Zhang Department of Plant Sciences, University of California-Davis, USA
M. Rouse, Z. Abate, Y. Jin, and J. Dubcovsky

With the TTKS family of races virulent on most genes currently providing protection against stem rust worldwide, identifying, mapping, and deploying resistance genes effective against these races has become critical.  We present here a genetic map of Sr35.  Both parents of our diploid mapping population (DV92/G3116, 142 SSD lines) are resistant to TTKSK, but the population segregates for resistance to TRTTF (Yemen) and RKQQC (US). Race analysis suggests that G3116 carries Sr21 and DV92 both Sr21 and Sr35.  Resistance to TRTTF and RKQQC was mapped to a 6 cM interval on chromosome 3AmL between markers BF483299 and CJ656351.  This interval corresponds to a 178-kb region in Brachypodium which contains only 16 annotated genes and exhibits a small inversion (including 2 genes) and a putative insertion (2 genes) relative to rice and sorghum.  This map contains closely-linked markers to Sr35 and provides the initial step for this gene's positional cloning.

Tags:

Surveillance and race analysis of stem rust in Kenya for the years 2008 and 2009

BGRI 2010 Poster Abstract
Ruth Wanyera KALRO-Njoro, Kenya
D. Singh, P. Njau, T. Fetch, Y. Jin, D. Hodson, and S. Kilonzo

Limited but targeted stem rust race characterization was undertaken in Kenya in 2004 and 2005 which led to the detection of Ug99 present in Kenya and designation of Ug99 as race TTKS (based on North American stem rust race nomenclature system). Further surveillance in 2006 and 2007 detected variants of TTKS with virulence on Sr24 (TTKST) and Sr36 (TTTSK), respectively. Stem rust surveillance was undertaken at an extended level in 2008 and 2009 within predominant wheat growing regions of Kenya. Three hundred and sixty farms were surveyed from regional districts of Naivasha, Narok, Nakuru, Laikipia, Meru, Uasin-Gishu, Nandi, Elgeyo and Trans-Nzioa, during 2008 main season (May to September and December). The information from farmers indicated that more than 95% of these farms were sprayed with fungicides. Despite the use of fungicides, stem rust was detected in 67% of the surveyed farms. Stem rust ranged from trace amount -100% in severity with minimum infection in Naivasha district (40%) and maximum in Narok district (90%). Yellow rust was detected in 22% of the farms. Out of one hundred and twenty-six stem rust samples collected, 37 and 39 (a total of 76 ) samples were sent to Cereal Disease Laboratory (CDL) Minnesota, USA and Cereal Research Laboratory of Agriculture and Agri-Food Canada respectively, for race typing using the respective differentials used by these labs. From the 39 collections sent to Canada, 17 (43%) survived, of which majority were typed to TTKST (65%) followed by TTKSK (18%), PTKST (12%) and mixture of TTKST and TTKSK (5%). The CDL typed vast majority of pathotypes as TTKSK (84%) followed by TTKST and TTTSK (7% each). The combined results of two labs indicated that predominant frequency in Kenya in 2008 was TTKSK (51%) followed by TTKST (31%), PTKST (6%) and TTTSK (6%). The frequency of TTKST significantly increased in 2008 compared to 2007 which is not surprising, given that Sr24 carrying wheat cultivar KS Mwamba is cultivated on large acreage in Kenya. In 2009, 262 farms were surveyed from regional districts of Narok, Laikipia, Nyandarua, Meru, Uasin-Gishu, Nandi, Elgeyo and Trans-Nzioa. The 2009 season experienced heavy drought in many areas. Nevertheless, stem rust was detected in 79% of the farms with disease severity ranging from trace to 100%. Yellow rust was detected in 15% of the farms. Stem rust infection ranged from 0 to 100% with minimum infection in Nyandarua (18%), Laikipia (42%) and maximum in Uasin-Gishu and Elgeyo (100% each). Out of seventy-four stem rust samples collected, 55 samples were sent to Canada for race typing. Only 20% of the samples survived, of which majority were typed to TTKST (50%), PTKST (34%) and PTKSK (16%). Borlaug Global Rust Initiative 2010 Technical Workshop / Poster Abstracts 7 The 2009 results did not depict real situation of predominance of pathogenic variability because of small sample size, however it provided fair indication that race TTKST is still the most prevalent. This information generated on the distribution of stem rust races, and the incidence of stem rust is important for anticipatory breeding and release of cultivars with effective sources of resistance in Kenya, and at same time mitigating global threat of stem rust by reducing intensity of stem rust inoculum in East Africa.

Tags:

Cytogenetic manipulation to enhance the utility of alien resistance genes

BGRI 2009 Plenary Abstract
Mike Pumphrey Department of Crop and Soil Sciences, Washington State University, USA
I.S. Dundas, S.S. Xu, Y. Jin, J.D. Faris, X. Cai, W.X. Liu, L.L. Qi, B. Friebe, and B.S. Gill PDF icon View pumphrey_2009.pdf (236.58 KB)

Although many wild relatives in the Triticeae tribe have been exploited to transfer stem rust resistance genes to wheat, the derived germplasms have often not been immediately useful in wheat breeding programs. Too frequently, large chromosome segments surrounding desirable genes also harbor deleterious genes that result in unacceptable yield or quality. Recombination between chromosomes of wheat and chromosomes of distant relatives is very rare due to genetic restrictions on chromosome pairing in polyploid wheat. However, chromosome pairing can be manipulated by utilizing mutant stocks that relax this tight genetic control. The ph1b mutant produced by E.R. Sears over 30 years ago is an invaluable chromosome engineering tool, readily employed in the age of high-throughput molecular genetics. Shortened translocations have already been produced for stem rust resistance genes Sr26 and SrR using ph1b-induced homoeologous recombination. We are currently using induced-homoeologous recombination to reduce the sizes of alien chromosome segments surrounding TTKSK-effective genes Sr32, Sr37, Sr39, Sr40, Sr43, Sr47, SrTt3, Sr2S#1 and SrAeg5 to eliminate linkage drag putatively associated with these genes. Additional TTKSK-effective genes Sr44, SrHv6, SrAsp5, and SrAse3 were first targeted for development of compensating translocation stocks and then for shortening the size of each alien segment. Population development is also underway to characterize several potentially new sources of resistance.

Tags:

Cloned rust resistance genes and gene based molecular markers in wheat: Current status and future prospects

BGRI 2009 Plenary Abstract
Kota CSIRO Plant Industry, Australia
E.S. Lagudah, R. Mago, H. McFadden, P.K. Sambasivam, W. Spielmeyer, L. Tabe; B. Keller, S.G. Krattinger, L.L. Selter; S. Herrera-Foesel, J. Huerta-Espino, R.P. Singh; H. Bariana, R. Park, C. Wellings, S. Cloutier, and Y. Jin PDF icon View kota_2009.pdf (109.62 KB)

Two broad categories of resistance genes in wheat have been described. One group represents the so called seedling resistance or the ‘gene for gene’ class that often provides strong resistance to some but not all strains of a rust species. The other category referred to as adult plant resistance provide partial resistance that is expressed in adult plants during the critical grain filling stage of wheat development. A few seedling rust resistance genes have been cloned in wheat and other cereals and are predominantly from the nucleotide binding site/leucine rich repeat class which is associated with localized cell death at the pathogen entry site. Until recently, the molecular basis of race non-specific, partial and slow rusting adult plant resistance genes were unknown. Gene products that differ from known plant resistance genes were revealed from the recent cloning of the Yr18, Yr36 and Lr34 adult plant genes in wheat. The available range of diverse resistance gene sequences provide entry points for developing genebased markers and will facilitate selection of germplasm containing unique resistance gene combinations.

Tags:

Molecular-genetic dissection of rice nonhost resistance to wheat stem rust

BGRI 2009 Plenary Abstract
Michael Ayliffe CSIRO Plant Industry, Australia
Yue Jin, Brian Steffenson, Zhensheng Kang, Shiping Wang, and Hei Leung PDF icon View ayliffe_2009.pdf (244.47 KB)

Rust diseases remain a significant threat to the production of most cereals including wheat. New sources of resistance are continually sought by breeders to combat the emergence of new pathogen races. Rice is atypical in that it is an intensively grown cereal with no known rust pathogen. The resistance of rice to cereal rust diseases is referred to as nonhost resistance (NHR), a resistance mechanism that has only recently become genetically tractable. In this report, the mechanisms of rice NHR to wheat stem rust and other cereal rust diseases are explored and the potential for transferring this durable disease resistance to wheat is considered. Approaches being undertaken for the molecular-genetic dissection of rice NHR to rust are described.

Tags:

Screening for stem rust resistance in East Africa

BGRI 2009 Plenary Abstract
Davinder Singh The University of Sydney, Plant Breeding Institute, Australia
B. Girma, P. Njau, R. Wanyera, A. Badebo,S. Bhavani, R.P. Singh, J. Huerta-Espino, G. Woldeab, and R. Ward PDF icon View dsingh_2009.pdf (264.88 KB)

The East Africa program of the Borlaug Global Rust Initiative (BGRI) was launched to reduce the scale and scope of wheat stem rust epidemics in Kenya and Ethiopia, and to mitigate the global threat of virulent and dangerous rust races originating from this region. Since the launch in 2005, the screening facilities in Kenya and Ethiopia have helped to determine the extent of the world’s vulnerability to stem rust race Ug99 and its variants, identify diverse sources of resistance including adult plant resistance based on minor genes, and catalyze a comprehensive global response, leading to expanded awareness, expanded research and breeding activities, and resource mobilization. This paper reviews the role and achievements of the eastern African screening facilities along with the opportunities and challenges faced by the facilities during the ongoing global response to the emergence of Ug99 and its variants.

Tags:

Pages