All BGRI Abstracts

Displaying 21 - 30 of 416 records | 3 of 42 pages

Utilization of Jordanian durum wheat (Triticum turgidum ssp durum) landraces for crop improvement in dry areas

BGRI 2018 Poster Abstract
Ayed Al-Abdallat Faculty of Agriculture, The University of Jordan
Moneer Mansour, Nasab Rawashdah, Rabei Sayaydeh

Durum wheat (Triticum turgidum subsp. durum) landraces are rapidly disappearing from the main wheat production areas in the Fertile Crescent. Such local landraces are most likely contain geographically specific, ectopically adapted alleles or gene complexes for their harsh environments. A panel of 156 durum wheat landraces and released varieties were assembled from historical collections deposited in national and international gene banks and from a recent active collection mission from selected areas across Jordan. The panel were evaluated under field conditions in two different locations for one growing season. Data for days to heading, plant height, peduncle length, number of spikes spike length, spike weight, grains number, grains weight, number of kernels per spike and thousand-kernel weight were recorded. Results indicate the existence of a wide variation between the tested genotypes for all tested agronomical traits. For heading date, the Jordanian landrace "JDu103" was the earliest under dry environment conditions. Regarding grains weight and spike weight, the Jordanian landrace "JDu105" produced the highest mean value under humid conditions. Another landrace "JDu46" produced the longest spikes and the highest TKW mean value, while the Jordanian landrace "JDu105" produced the heaviest spikes weight mean value, while "JDu100" produced the highest grains number. For molecular analysis, total genomic DNA was extracted from each genotype and then used for SNP genotyping using Illumina iSelect wheat 90k SNP chip. Structure analysis showed that the analyzed durum wheat panel can be divided into three genetically distinct subgroups. The GWAS analysis identified 93 significant markers-traits associations for multiple traits with two QTLs located at 7A and 7B, which seems important for TKW in durum wheat under dry environments. In conclusion, the Jordanian landraces used in this study showed wide genotypic and phenotypic variability, which can be considered by plant breeders for their future use in breeding programs.

Tags:

High yielding bread wheat cultivar Alaa with potential to retard rust spread in rain-fed and irrigated zones of Iraq

BGRI 2018 Poster Abstract
Emad Al-Maaroof Sulaimani University,IKR, Iraq

Rusts continue to cause significant losses in grain yield of wheat in Iraq. Substitution of susceptible cultivars with resistant ones is an important step in reducing the vulnerability of the wheat crop. The present study represents a breeding program to develop high yielding bread wheat cultivars with resistance to brown rust and yellow rust. The performance of 265 spring wheat genotypes representing an international bread wheat-screening nursery from CIMMYT were evaluated in different agro-ecological zones in comparison with local commercial cultivars. Adult plant stage screening of the materials for brown rust and yellow rust reaction under inoculated conditions for three successive seasons identified 29 resistant and 59 moderately resistant genotypes, and 79 genotypes out-yielded the local cultivars. The selected lines were comprehensively evaluated for grain yield potential and disease response in different locations and agro-systems. Among 13 genotypes line 172 was selected for higher grain yield than local commercial cultivars in the presence and absence of both diseases. Mean coefficients of infection on line 172 were 0.57 and 5.35 to brown rust and yellow rust, respectively. It was also moderately resistant to common bunt. Yield potential of the new cv. Alaa was 9-20% higher than the commercial local cultivars Araz, Tamuz 2 and Adana. Alaa was registered and released by the National Committee for Registration and Release of Agricultural Cultivars according to order no. 39, 30/10/2017 as a new cultivar with high yield potential and resistance to brown rust and yellow rust. Great emphasis was made on multiplication and delivery of seeds to farmers. Grain yield potential of Alaa on a farm scale is 3,372 Kg/ha under rain-fed conditions and 5,024 Kg/ha under irrigated conditions.

Tags:

Impact of Monsanto's Beachell-Borlaug International Scholars Program

BGRI 2018 Poster Abstract
Edward Runge AgriLife Research, Texas A&M University
David Baltensperger

Monsanto, through the MBBIScholars Program, has invested $13 million over an 8 year period for training rice and wheat breeders from around the World. The Judging Panel for MBBISP selected 89 Scholars from 432 applicants. The selected scholars were from 30 different countries. Scholars selected included 35 young ladies and 54 young men, 37 are in rice breeding and 52 in wheat breeding. Currently 28 Scholars are still completing their PhD programs (As of 8/8/2017). This past year Monsanto established the "Ted Crosbie Monsanto Beachell-Borlaug International Scholars Impact Award" to begin recognizing Scholar contributions. To be eligible for the "Ted Crosbie MBBIScholars Impact Award," scholars must have received their PhD and must apply for the award. Bhoja Basnet, selected as an MBBIScholar in 2009 who is now in charge of CIMMYT's Hybrid Wheat Breeding program, was selected to receive the "Ted Crosbie Monsanto Beachell-Borlaug Scholars Program Impact Award" this year. Scholar contributions are in wheat and rice breeding as well as in other crops. Hopefully the Ted Crosbie MBBIScholars Impact Award will continue to recognize accomplishments of Scholars into the future. MBBIScholars are making an impact and we look forward to recognize their career contributions. Employment of Scholars post PhD will be reviewed.

Tags:

Variation in Leaf Tip Necrosis and its effect on yield traits in wheat

BGRI 2018 Poster Abstract
VinodKumar Mishra Institute of Agricultural Sciences, Banaras Hindu University, India-221005
Punam Singh,Yadav, Naveen Kumar, Umesh Chandra, Dubey, Ramesh Chand, Sundeep Kumar, Arun Kumar Joshi

Four leaf rust adult plant resistance genes (Lr34, Lr46, Lr67 and Lr68) are known to be associated with leaf tip necrosis (LTN). LTN caused by these genes is different from each other at phenotypic level. LTN associated with APR genes Lr34, Lr46 and Lr67 has been designated as Ltn1, Ltn2 and Ltn3. Seventy-seven CIMMYT genotypes were selected to find out the association between genotypic and phenotypic variability for LTN and its association with yield traits; 1000 grain weight, grain yield, leaf area and percentage of leaf tip necrosis in the flag leaf of main tiller. All the genotypes were screened for the presence of 3 APR genes with linked markers, csLV34 for Lr34; Xwmc44 and Xgwm259 for Lr46 and Xcfd71 for Lr67. The genotypes were grouped into 5 classes; only Lr34, only Lr46, only Lr67, Lr34+L46+Lr67 and genotypes lacking all three genes. Molecular analysis revealed that 7 genotype with Lr34 only, 6 with Lr46 only, 7 with Lr67 only, 13 with all the 3 genes, and 28 without any Lr gene. Phenotypic data of LTN percentage was compared and it was noted that maximum LTN % was observed for Lr67 (7.811%) followed by Lr46 (7.348%) and Lr34 (6.47%). Surprisingly, presence of all three genes reduced the LTN% (4.7055%) as compared with absence of all three genes (6.011%). It was also observed that the three genes simultaneously reduced 1000 grain weight and plot yield. All three genes increased leaf area highly significantly both when they are alone or together (34.7 to 44.7 cm2) in comparison to those genotypes (24.7 cm2) which lacks these Lr genes and also reduced 1000-grain weight and plot yield but non-significantly.

Tags:

Occurrence of wheat rusts in Algeria and strategies to reduce crop losses

BGRI 2018 Poster Abstract
Amira Bentounsi University Mentouri of Constantine, Algeria

Wheat is the world's most widely grown food crop. New races of pathogens frequently overcome current resistant varieties. To address this issue Algeria has strategies for immediate action, medium term protection and long-term research efforts to develop new resistant wheat varieties. Yellow rust is a very important disease of wheat in Algeria where 60% of the wheat crop is grown under cooler high elevation climate conditions (2?C ? 15?C). Crop losses reached 80% during the 2004/2005 epidemics. Strategies adopted to reduce the risk of wheat rust are ongoing yearly surveillance, awareness, and early warning systems to farmers; and breeding and developing new varieties with high yield potential and durable resistance. Several highly resistant varieties (Tiddis, Boumerzoug, Massine, Akhamokh and Yacine) were selected and promoted following seed multiplication and commercial release. They are also widely used in crosses to improve local varieties. The newly released varieties are being distributed to farmers that grow susceptible varieties. This gene deployment will provide a natural barrier between eastern to western Algeria to intercept the major direction of air flow. Fungicide control is now routinely applied soon after rust detection or even preemptively. The level of awareness for wheat rusts across Algeria is now very high. Training among farmers for visual detection is widely promoted by plant protection and extension services. These strategies have been very effective in mitigating the threat of wheat stripe rust such that losses have not exceeded 10% over the last five years.

Tags:

Evaluation and Selection of Wheat Lines for Biotic and Abiotic Stresses in Pakistan

BGRI 2018 Poster Abstract
Muhammad Imtiaz CIMMYT
Muhammad,Noor, Makhdoom, Hussain, Majid, Nadeem, Monsif, ur Rehman, Jesse, Poland, Ravi, Prakash Singh, Matthew, Reynolds,, , , , , , , , , , , , , , , ,

Drought and heat along with rusts are the most common biotic and abiotic stresses that affect growth, development and yield of wheat crop in Pakistan. CIMMYT in partnership with Wheat Research Institute Faisalabad (WRI-Fsd), USDA, and Kansas State University initiated an effort to develop heat tolerant, high yielding, and farmer-accepted rusts resistant wheat varieties for Pakistan. A set of 1656 wheat lines received in the form of EPCBW and SABWGPYT nurseries were tested in 2013-14 and 2014-15 wheat season, respectively. Testing of the materials at (WRI-Fsd), Pakistan under normal and late planting conditions resulted in the selection of 55 lines with higher grain yield and resistant to both leaf (LR) and yellow (YR) rusts. Among these lines, the line no. 1027 produced maximum yield (5.78 ton/ha) under normal and line no. 5030 produced maximum yield (3.38t/ha) under late planting conditions with resistance to both LR and YR. Further evaluation of the selected 55 lines as HYT-60 in 2015-16 showed the average grain yield ranged from 4.98 to 2.51 ton/ha under normal and 1.74 to 0.73 t/ha under late planting. Three lines HYT-60-57, HYT-60-7 and HYT-60-5 were included in the first year advanced yield trials to test for their potential as commercial cultivars while another seventeen lines were distributed as HYT-20 to six national wheat breeding programs for yield testing at key location which will enable national partners to combine yield potential with resistance to biotic and abiotic stresses.

Tags:

Yield loss due to stem rust in wheat varieties with different types of resistance

BGRI 2018 Poster Abstract
Tegwe Soko University of the Free State and Seed-Co
Vicky Coetzee, Cornelia M. Bender, Renée Prins, Zacharias A. Pretorius

Notwithstanding the re-emergence and importance of wheat stem rust caused by Puccinia graminis f. sp. tritici (Pgt), the degree of protection provided by different types of resistance has not been carefully investigated in contemporary studies. Seven wheat entries were exposed to stem rust infection and fungicide response in a split-plot field experiment over two seasons. Severe epidemics of Pgt race PTKST, generated by frequent inoculation of spreader rows within and around the trial, developed in both years. By comparing grain yield in rusted and fungicide sprayed plots, varieties SC Nduna (Sr31) and SC Stallion (Sr2+Sr31) sustained mean yield losses of 28.8% and 20.7%, respectively. From entries with adult plant resistance (APR), Kingbird recorded a loss of 10.1% as compared to W1406 (19.5%) and W6979 (15.4%). Grain yield of SC Sky which exhibits all stage resistance (ASR) was reduced by 6.4% over the two seasons. The highest yield loss (47.9%) was measured for Line 37, the susceptible control. A significant linear relationship occurred between percentage yield loss and AUDPC in both seasons (R2=0.99 and 0.83). This study showed that not all sources of APR to stem rust provided the same level of protection under severe disease pressure. In the absence of virulence for SC Sky, ASR conferred the most protection.

Tags:

Belonging identity of Puccinia striiformis f. sp. tritici population in Egypt

BGRI 2018 Poster Abstract
Ibrahim Draz Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt

Stripe rust (Puccinia striiformis f. sp tritici) (Pst) infected wheat samples collected from three Egyptian Governorates (Alexandria, Beheira and Kafr-El Sheikh) were processed for race analysis to determine the race identity among the current populations of the stripe rust fungus. Single uredinial isolates were inoculated to a core set of the 17 World/European differential hosts along with wheat lines with Yr17, Yr25, Yr32. Based on virulence phenotyping, the data revealed that the current populations of Pst belong to three races: Triticale aggressive (virulent to Yr2, Yr6, Yr7, Yr8, Yr10); PstS3 (virulent to Yr2, Yr6, Yr7, Yr8, Yr25); and PstS2 (virulent to Yr2, Yr6, Yr7, Yr8, Yr9, Yr25, Yr27). No collections were found with the Warrior race, that has virulence to Yr1, Yr2, Yr3, Yr4, Yr6, Yr7, Yr9, Yr17, Yr25, Yr32, YrSp).

Tags:

Survey of wheat stem rust Puccinia graminis f. sp. tritici in Jordan

BGRI 2018 Poster Abstract
Kholoud Alananbeh The University of Jordan
Ayed Al Abdallat, Monther Tahat

Studies on whet stem rust (WSR) in Jordan are considered to be old. There was only one study conducted in the late 1980's by Abu-Blan and Duwayri (1989) to evaluate the infection of wheat cultivars with black stem rust disease (Puccinia graminis f. sp. tritici). Recently, reports of stem rust were published in Israel and Lebanon in 2010 and first report of Ug99 was reported in Egypt in 2014. The objectives of our research are to: (i) survey wheat growing areas for WSR in Jordan during the years 2017-2020, (ii) identification of WSR races isolated from Jordan morphologically and molecularly, (iii) analyze rust populations in terms of their response to known differential sets, pathotype distribution and diversity, (iv) screening the response of Jordanian wheat germplasm to the identified WSR strains, and (vi) study the population diversity of WSR races using RT-PCR and SNP genotyping. In 2017 a total of 270 fields of wheat and barley in the wheat and barley growing areas in Jordan were surveyed from March-May. The survey covered northern, middle, and southern parts of Jordan (arid and semi-arid regions). Altitude, longitude, and latitude data was recorded. Only few WSR pustules (n=4) were collected because the environmental conditions were not suitable for the disease to develop. On the other hand, wheat stripe rust was very common in the wheat growing areas mainly at the southern parts of the country. Other fungal plant pathogens were also reported including smuts, spots, blotches, powdery mildew, crown rot, fusarium head blight, and flag smut.

Tags:

Molecular screening of stem rust resistance genes Sr11, Sr26 and Sr31 in wheat genotypes of Azerbaijan

BGRI 2018 Poster Abstract
Samira Rustamova Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences
Shahriyar Sadigov, Alamdar Mammadov, Irada Huseynova

Rust of cereals are considered to be an important disease in many countries, including Azerbaijan. One of these is stem rust caused by Puccinia graminis f. sp. tritici (Pgt). Extensive research on the identification of wheat stem rust resistance genes and effectiveness of these genes in various geographical regions have been conducted. Genetic resistance is one of the most effective ways for controlling stem rust. Sixty-nine stem rust resistance genes (including 45 identified Sr genes and 24 genes with temporary designations) are registered in the Komugi Wheat Genetics Resource Database. It is important to use proper combinations of resistance genes in developing lasting resistance wheat. The main purpose of the study was to identify lines caring Sr11, Sr26 and Sr31 genes, which are effective to the predominant Pgt races in Azerbaijan. Durum and bread wheat genotypes differing in their disease resistance, productivity and other physiological traits were chosen from the wheat gene bank of the Research Institute of Crop Husbandry (Baku, Azerbaijan) for analysis. DNA extraction was carried out according to standard CTAB protocol. RT-PCR performed using KASP markers (KASP_6BL_BS0074288_51 and KASp_6BL_Tdurum contig55744_822) identified nine durum genotypes (out of 34 genotypes) and seven wheat genotypes (out of ten genotypes), caring Sr11. Using the dominant STS marker (Sr26#43) a diagnostic 207 bp amplicon for Sr26 gene, was observed in 11 of the 42 wheat genotypes tested. In eight of the 42 wheat genotypes tested, the diagnostic 1,110 bp amplicon was observed using the Lr26-Sr31-Yr9 locus specific marker iag95, characteristic of Sr31 gene located at 1BL.1RS translocation. For the first time, wheat germplasm in Azerbaijan was analyzed using KASP genotyping technology and genetic resources, and resulted in the identification of wheat lines with effective resistant to Puccinia graminis f. sp. tritici race TKTTF.

Tags:

Pages