All BGRI Abstracts

Displaying 21 - 30 of 415 records | 3 of 42 pages

GENETIC MAPPING OF SEEDLING AND ADULT PLANT RESISTANCE FOR STRIPE RUST IN SPRING BREAD WHEAT (TRITICUM AESTIVUM L.)

BGRI 2018 Poster Abstract
Yewubdar Isehtu Ethiopian Institute of Agricultural Research (EIAR)

Stripe rust caused by Puccinia striiformis f.sp.tritici, is one of the major diseases of wheat in the world. Experiments were carried out at two sites in Ethiopia (Kulumsa and Meraro) during the 2015 cropping season to evaluate the response of 198 elite bread wheat genotypes and two checks to the prevailing races of stripe rust at adult plant and seedling stage. The genetic profile of these genotypes was assessed using 13006 SNP markers and an association mapping was explored to determine marker?trait association. About 72.5% and 42.5% of the lines exhibited resistance at Kulumsa and Meraro, respectively. Out of 198 genotypes tested in the greenhouse, 31% exhibited common resistance for Kubsa and mixed stripe rust isolate. Only 8966 of the SNPs were polymorphic, only these were used for association mapping analysis. These markers spanned an average density of 3.47 cM per marker, with the poorest density on the D genome. Almost half of these markers were on known chromosomes, but had no position on the consensus map of bread wheat. Analysis of population structure revealed the existence of three clusters and the estimated genomic wide Linkage Disequilibrium (LD) decay in this study ranged from 0 to 50 cM. 53 SNPs in ten genomic regions located on wheat chromosome 1AL, 2AL, 2BL, 2DL, 3BL, 4BL, 4DL, 5AS, 7AL and 7BL were identified. Thirty nine SNP markers in five genomic regions at Kulumsa and 14 SNP markers in six genomic regions at Meraro explained more than 25.5% and 35.1% of phenotypic variability respectively. For seedling stage, 21 markers in ten genomic regions located on wheat chromosomes 1B, 2A, 2B, 3A, 3B, 4B, 4D, 5A, 6B and 7B were associated with resistant. These loci may be useful for choosing parents and incorporating new resistance genes into locally adapted cultivars.

Tags:

Belonging identity of Puccinia striiformis f. sp. tritici population in Egypt

BGRI 2018 Poster Abstract
Ibrahim Draz Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt

Stripe rust (Puccinia striiformis f. sp tritici) (Pst) infected wheat samples collected from three Egyptian Governorates (Alexandria, Beheira and Kafr-El Sheikh) were processed for race analysis to determine the race identity among the current populations of the stripe rust fungus. Single uredinial isolates were inoculated to a core set of the 17 World/European differential hosts along with wheat lines with Yr17, Yr25, Yr32. Based on virulence phenotyping, the data revealed that the current populations of Pst belong to three races: Triticale aggressive (virulent to Yr2, Yr6, Yr7, Yr8, Yr10); PstS3 (virulent to Yr2, Yr6, Yr7, Yr8, Yr25); and PstS2 (virulent to Yr2, Yr6, Yr7, Yr8, Yr9, Yr25, Yr27). No collections were found with the Warrior race, that has virulence to Yr1, Yr2, Yr3, Yr4, Yr6, Yr7, Yr9, Yr17, Yr25, Yr32, YrSp).

Tags:

Gone with the wind: Revisiting stem rust dispersal between southern Africa and Australia

BGRI 2018 Poster Abstract
Botma Visser Department of Plant Sciences, University of the Free State, South Africa
Marcel Meyer, Robert Park, Christopher Gilligan, Laura Burgin, Matthew Hort, David Hodson, Zacharias Pretorius

Despite being 10,000 km apart, the current study emphasizes the potential vulnerability of Australia to wind-borne Puccinia graminis f. sp. tritici (Pgt) spore introductions from southern Africa. Of four Pgt introductions into Australia since 1925, at least two (races 326-1,2,3,5,6 and 194-1,2,3,5,6) are thought to have originated from southern Africa. Microsatellite analysis of 29 Australian and South African Pgt races confirmed close genetic relationships between the majority of races in these two geographically separated populations, thus supporting previously reported phenotypic similarities. Using Lagrangian Particle Dispersion Model simulations with finely-resolved global meteorological data over a 14-year period and a three-day urediniospore survival time, the study showed that long distance dispersal of Pgt from southern Africa to Australia is possible, albeit rare. Transmission events occurred most frequently from central South Africa, but were also possible from southern South Africa and Zimbabwe; while none occurred from a representative source-location in Tanzania. Direct dispersal incursions into both the western and eastern Australian wheat belts were feasible. Together, the genetic and simulation data strongly support the hypothesis that earlier introductions of Pgt into Australia occurred through long-distance wind-dispersal across the Indian Ocean. The study thus acts as a warning of possible future Pgt dispersal events to Australia which could include members of the Ug99 race group. This emphasizes the continued need for Pgt surveillance on both continents.

Tags:

High yielding bread wheat cultivar Alaa with potential to retard rust spread in rain-fed and irrigated zones of Iraq

BGRI 2018 Poster Abstract
Emad Al-Maaroof Sulaimani University,IKR, Iraq

Rusts continue to cause significant losses in grain yield of wheat in Iraq. Substitution of susceptible cultivars with resistant ones is an important step in reducing the vulnerability of the wheat crop. The present study represents a breeding program to develop high yielding bread wheat cultivars with resistance to brown rust and yellow rust. The performance of 265 spring wheat genotypes representing an international bread wheat-screening nursery from CIMMYT were evaluated in different agro-ecological zones in comparison with local commercial cultivars. Adult plant stage screening of the materials for brown rust and yellow rust reaction under inoculated conditions for three successive seasons identified 29 resistant and 59 moderately resistant genotypes, and 79 genotypes out-yielded the local cultivars. The selected lines were comprehensively evaluated for grain yield potential and disease response in different locations and agro-systems. Among 13 genotypes line 172 was selected for higher grain yield than local commercial cultivars in the presence and absence of both diseases. Mean coefficients of infection on line 172 were 0.57 and 5.35 to brown rust and yellow rust, respectively. It was also moderately resistant to common bunt. Yield potential of the new cv. Alaa was 9-20% higher than the commercial local cultivars Araz, Tamuz 2 and Adana. Alaa was registered and released by the National Committee for Registration and Release of Agricultural Cultivars according to order no. 39, 30/10/2017 as a new cultivar with high yield potential and resistance to brown rust and yellow rust. Great emphasis was made on multiplication and delivery of seeds to farmers. Grain yield potential of Alaa on a farm scale is 3,372 Kg/ha under rain-fed conditions and 5,024 Kg/ha under irrigated conditions.

Tags:

Molecular screening of stem rust resistance genes Sr11, Sr26 and Sr31 in wheat genotypes of Azerbaijan

BGRI 2018 Poster Abstract
Samira Rustamova Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences
Shahriyar Sadigov, Alamdar Mammadov, Irada Huseynova

Rust of cereals are considered to be an important disease in many countries, including Azerbaijan. One of these is stem rust caused by Puccinia graminis f. sp. tritici (Pgt). Extensive research on the identification of wheat stem rust resistance genes and effectiveness of these genes in various geographical regions have been conducted. Genetic resistance is one of the most effective ways for controlling stem rust. Sixty-nine stem rust resistance genes (including 45 identified Sr genes and 24 genes with temporary designations) are registered in the Komugi Wheat Genetics Resource Database. It is important to use proper combinations of resistance genes in developing lasting resistance wheat. The main purpose of the study was to identify lines caring Sr11, Sr26 and Sr31 genes, which are effective to the predominant Pgt races in Azerbaijan. Durum and bread wheat genotypes differing in their disease resistance, productivity and other physiological traits were chosen from the wheat gene bank of the Research Institute of Crop Husbandry (Baku, Azerbaijan) for analysis. DNA extraction was carried out according to standard CTAB protocol. RT-PCR performed using KASP markers (KASP_6BL_BS0074288_51 and KASp_6BL_Tdurum contig55744_822) identified nine durum genotypes (out of 34 genotypes) and seven wheat genotypes (out of ten genotypes), caring Sr11. Using the dominant STS marker (Sr26#43) a diagnostic 207 bp amplicon for Sr26 gene, was observed in 11 of the 42 wheat genotypes tested. In eight of the 42 wheat genotypes tested, the diagnostic 1,110 bp amplicon was observed using the Lr26-Sr31-Yr9 locus specific marker iag95, characteristic of Sr31 gene located at 1BL.1RS translocation. For the first time, wheat germplasm in Azerbaijan was analyzed using KASP genotyping technology and genetic resources, and resulted in the identification of wheat lines with effective resistant to Puccinia graminis f. sp. tritici race TKTTF.

Tags:

Wheat stem rust pathogen (Pgt) Identification and Characterization in Egypt using Single Nucleotide Polymorphism (SNP) markers.

BGRI 2018 Poster Abstract
Samar Mohamed Esmail Wheat Dis. Res. Dept., Plant Pathol. Res. Inst., A.R.C., Sakha, Egypt
Les John Szabo

Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is one of the most serious disease of wheat worldwide. The discovery of new Pgt races in Africa, Ug99 and its variants, brings a new threat to global wheat production. In this study, 50 single pustule stem rust samples, were collected during 2015-2016 from the International Stem rust Trap Nursery (ISRTN) and commercial wheat fields in Sakha, the most important wheat growing region in Egypt. SNP-genotyping was carried out at USDA-ARS Cereal Disease Laboratory. Infection and genotype data confirmed that none of these samples belonged to the Pgt Ug99 race group. Forty-five samples were successfully genotyped consisting of 12 multi-locus genotypes (MLGs). The majority (86.7%) of the samples belonged to three clades: 10 samples, clade III-B (MLG.04, race TTRTF) collected from Misr 3, Sakha 95 and Sids 14 wheat lines; 12 samples, clade IV-A.2 (MLG.06, race TKTTF) collected from Sr 5, Sr6, Sr7a, Sr7b, Sr8b, Sr9a, Sr9e, Sr10, Sr11, Sr15, Sr16 and Sr17 wheat lines; 17 samples, clade IV-E.2 (MLG.11, race TKKTF) from Sr13, Sr14, Sr19, SrMcN, Sr24, Misr 1, Misr 2, Sakha95 and Sids 12 wheat lines. Pgt samples belonging to clades IV-A.2 and IV-E.2 have been observed from Europe to the Middle East, and samples from clade III-B from the southern Caucasus Mountains, Middle East to northeast Africa. The remaining six samples collected from Sr12, Sr18, Sr20, Sr21, Sr22 and Sr25 wheat lines represent two new genotypes (MLG.14 and MLG.17) that have not been assigned to clades. MLG.14 was also observed in samples from Azerbaijan, Iraq and Eritrea. In contrast, this represents the first detection of MLG.17. These results suggest continued variability of the Pgt population in Egypt therefore, emphasizing the importance regularly monitoring to timely identify new races, and utilize this information in screening and identification of effective sources of resistance.

Tags:

Molecular and field based characterization of yellow rust resistance in wheat germplasm across locations in Pakistan

BGRI 2018 Poster Abstract
Aamir Iqbal The University of Agriculture, Peshawar, Pakistan
Muhammad Khan, Muhammad Ismail, Sher Nawab, Abdullah Jalal, Muhammad Imtiaz, Sajid Ali

Rust disease response is used to assess the resistance status of breeding lines, which is required to be tested across location and complemented with molecular markers. The current study was designed to characterize yellow rust resistance in 29 introduced advanced CIMMYT wheat lines along with three check varieties across three contrasting wheat growing regions (Peshawar, Mansehra and Lakki-Marwat) during wheat season 2015-16. A high disease pressure was observed across all three locations as favorable cold and wet climatic conditions prevailed during 2015-16. The maximum disease was recorded at Mansehra (up to 90%) followed by Peshawar (up to 50%) and Lakki-Marwat (up to 45%). There was a significant variability amongst the tested wheat lines for yellow rust severity and in yield potential. Among the advanced lines, W-SA-104, W-SA-115 and W-SA-118 had better grain and biological yield. Based on disease and yield parameters, cluster analysis of 29 wheat lines along with three checks grouped wheat lines into four clusters. None of these wheat lines showed resistance at every location (Average coefficient of infection "ACI" = 0). The maximum co-efficient of infection (55) was recorded at Mansehra whereas the minimum (0) was recorded at Peshawar and Lakki-Marwat. Twenty-six of these wheat lines were identified to possess partial resistance to yellow rust (with ACI < 20). Genotyping for the presence of resistance gene markers STS-7 (linked with Yr5), SC-Y15 (linked with Yr17) and Xwmc-44 (linked with Yr29) revealed the highest frequency of Yr17 (90.60%), followed by Yr29 (87.5%) and Yr5 (50%). The three resistant genes together were present only in 15 wheat lines (46.87%). Our results thus revealed the presence of variation in resistance response based on both field testing and molecular markers which could be utilized in wheat breeding to develop better resistance varieties to be exploited at field level.

Tags:

Exploring genotypic variation and assessment of stress selection indices for some productive traits in bread wheat

BGRI 2018 Poster Abstract
Muhammad Ishaq Cereal Crops Research Institute (CCRI), Pirsabak Nowshera Khyber Pakhtunkhwa-Pakistan
Gulzar,Ahmad, Imtiaz, Muhammad, Khilwat, Afridi, , , , , , , , , , , , , , , , , , , , , , , ,

In the current scenario of climatic change, exploration and development of new stable genotypes performing better under stressed and non stressed environmental conditions is the priority of wheat breeders for exploiting genetic variability to improve stress tolerant cultivars. Late planting is one of the major abiotic stresses, seriously influencing wheat production. In the current study, twenty eight bread wheat genotypes were evaluated independently under normal (optimal) and late (stress) planting conditions at Cereal Crops Research Institute (CCRI), Pirsabak Nowshera Khyber Pakhtunkhwa Pakistan during 2013-14. Analysis of variance revealed highly significant (P < 0.01) differences among the genotypes, planting (sowing dates), and genotype ? sowing dates interactions effects for the studied traits. Generally, reduction in plant height (0.41 to 10.91%) and grain yield (0.36 to 53.35%) was observed among the tested genotypes under late planting as compared to normal (optimal) planting. Least % reduction in grain yield was recorded for genotypes BWL-23 (0.36%), BWL-4(0.76%), BWL-16(1.22%) and BWL-13 (1.78%) and were found tolerant to late planting stress as compared to check (Pirsabak-2008). Eight stress selection indices i.e. Mean productivity (MP), Tolerance (TOL), Geometric Mean Productivity (GMP), Harmonic mean (HM), Stress selection Indices(SSI), Stress Tolerance Index (STI), Yield Index (YI) and Yield Stability Index (YSI) were determined based on mean performance of genotypes evaluated under normal and late planting conditions. Analysis of correlation revealed that plant height and grain yield under normal and late planting conditions, had significant positive correlation with stress selection indices i.e. GM, HM, SSI and YI. These selection indices could be effective in identification of lines/ genotypes to late planting stress tolerant conditions. Based on MP, GMP, HM, STI and YI genotypes i.e. Pirsabak-2008, BWL-23 and BWL-27 were found late planting stress tolerant and could be recommended for sowing in both normal and late planting.

Tags:

MicroRNAs and their mega effects on gene expression in response to leaf rust in wheat (Triticum aestivum L.)

BGRI 2018 Poster Abstract
Summi Dutta Department of BioEngineering, Birla Institute of Technology, Mesra, Ranchi, India
Manish Kumar, Kunal Mukhopadhyay

Bread wheat (Triticum aestivum L.) being the world's most popular edible cereal, plays a major role in global economy. Rust in wheat leaves, caused by Puccinia triticina, affects grain quality and severely retards its production worldwide. Micro(mi)RNAs are considered major components of gene silencing and so have a great role to play during stress. The present study focuses on identification of miRNAs, produced by host to suppress pathogen as well as delivered by pathogens to encounter host defence mechanism. Therefore, these miRNAs may be called as leaf rust responsive microRNAs. Small RNA and degradome libraries were prepared from a pair of near isogenic lines of wheat (HD2329, HD2329+Lr24), one set was mock inoculated while the other set was inoculated with urediniospores of leaf rust pathogen. Using these libraries as input a vast number of miRNAs rather a population of miRNAs were identified derived from wheat that were targeting genes mostly involved in functions like defense response, signal transduction, development, metabolism, and transcriptional regulation.
When reads specifically produced under pathogen inoculation were taken as input with Puccinia triticina genome sequences as reference, only three putative miRNA precursor loci were detected and the molecules produced were called miRNA-like molecules as their precursors lacked one or two criteria essential for a true miRNA precursor. The identified miRNAs were targeting genes like F-box protein, MAP kinase, calmodulin and susceptible antioxidant protein. We further identified the presence of argonaute and dicer like domains in Puccinia proteome available at FungiEnsembl which strengthens presence of RNAi-like activities in Puccinia.
In addition, differential expression of wheat as well as Puccinia small RNAs using stem loop RT-PCR under varying time points of disease progression (0-168 hpi) revealed their direct connection with stress responses.

Tags:

Spreading of wheat yellow rust pathogen (Puccinia striiformis West.) in the south of Russia in 2017

BGRI 2018 Poster Abstract
Galina Vladimirovna Volkova All Russian Research Institute of Biological Plant Protection
Irina Petrovna Matveeva

Yellow rust caused by Puccinia striiformis West. is a harmful and dangerous disease in the south of Russia. Yield losses under optimum conditions on highly susceptible varieties can vary from 10 to 100%. During the growing season of 2017, cool weather with constant precipitation from the third decade of April to the first decade of June contributed to the intensive development of the pathogen. Surveys of the main winter wheat production areas in five agroclimatic zones of the region revealed that yellow rust was prevalent in all areas. The maximum development of P.striiformis was observed in southern submontane and western Priazovsky agroclimatic zones. Some varieties such as Grom, Yuka, Tanya, Anka had losses to yellow rust of up to 30-40 %. In the central and northern agroclimatic zones, the losses averaged 5%, whereas in the dry eastern steppe zone losses were only up to 1%. The build up of yellow rust inoculum in the region raises concerns that in 2018, under favorable weather conditions in spring, winter wheat crops could be infected with the disease, especially in the wetter agroclimatic zones.

Tags:

Pages