All BGRI Abstracts

Displaying 11 - 20 of 416 records | 2 of 42 pages

A large nested association mapping population to map agronomic QTL and smallholder farmers preference in Ethiopian durum wheat

BGRI 2018 Poster Abstract
Matteo Dell'Acqua Scuola Superiore Sant'Anna
Yosef G.,Kidane, Cherinet, Alem, Bogale, Nigir, Dejene, Mengistu, Carlo, Fadda, , , , , , , , , , , , , , , , , , , ,

The Ethiopian plateau hosts thousands of durum wheat landraces cultivated in low input agriculture conducted by an estimated 70 million smallholder farmers. Having thoroughly characterized the phenotypic and molecular uniqueness of Ethiopian durum wheat landraces, we produced a large nested association mapping (NAM) population harnessing their mostly untapped diversity in a set of recombinant inbred lines (RIL). The NAM founders are 50 landraces providing valuable traits such as drought tolerance and resistance to pests, and maximizing molecular diversity. Each selected landrace was crossed to a durum wheat line with an international background (Asassa), establishing independent interconnected bi-parental families, for a total of 6,280 RILs currently in F8. The Ethiopian NAM is at once i) a powerful QTL mapping tool that will side the increasing availability of genomic tools in wheat towards high-throughput candidate genes identification, and ii) a large pre-breeding panel closing the gap between local and international materials. Here we discuss the molecular and phenotypic characterization of twelve NAM families, represented by 100 RILs each. The 1,200 NAM RIL showed elevated allelic variation and a genetic structure reminiscent of the breeding design followed. The NAM RILs were phenotyped for ten agronomic and five disease traits in multiple locations in the Ethiopian highlands. A quantitative method eliciting smallholder farmers traditional knowledge was used to record local farmers appreciation of NAM RILs in all phenotyping locations. We report that the superior genetic properties of the NAM can be used to map QTL for both agronomic and farmer traits with unprecedented precision. The most promising NAM RILs can be identified combining farmers appreciation and agronomic measures, and prioritized for introgression of Ethiopian landraces traits in breeding pipelines aiming at higher uptake and productivity in local agriculture.

Tags:

GENETIC MAPPING OF SEEDLING AND ADULT PLANT RESISTANCE FOR STRIPE RUST IN SPRING BREAD WHEAT (TRITICUM AESTIVUM L.)

BGRI 2018 Poster Abstract
Yewubdar Isehtu Ethiopian Institute of Agricultural Research (EIAR)

Stripe rust caused by Puccinia striiformis f.sp.tritici, is one of the major diseases of wheat in the world. Experiments were carried out at two sites in Ethiopia (Kulumsa and Meraro) during the 2015 cropping season to evaluate the response of 198 elite bread wheat genotypes and two checks to the prevailing races of stripe rust at adult plant and seedling stage. The genetic profile of these genotypes was assessed using 13006 SNP markers and an association mapping was explored to determine marker?trait association. About 72.5% and 42.5% of the lines exhibited resistance at Kulumsa and Meraro, respectively. Out of 198 genotypes tested in the greenhouse, 31% exhibited common resistance for Kubsa and mixed stripe rust isolate. Only 8966 of the SNPs were polymorphic, only these were used for association mapping analysis. These markers spanned an average density of 3.47 cM per marker, with the poorest density on the D genome. Almost half of these markers were on known chromosomes, but had no position on the consensus map of bread wheat. Analysis of population structure revealed the existence of three clusters and the estimated genomic wide Linkage Disequilibrium (LD) decay in this study ranged from 0 to 50 cM. 53 SNPs in ten genomic regions located on wheat chromosome 1AL, 2AL, 2BL, 2DL, 3BL, 4BL, 4DL, 5AS, 7AL and 7BL were identified. Thirty nine SNP markers in five genomic regions at Kulumsa and 14 SNP markers in six genomic regions at Meraro explained more than 25.5% and 35.1% of phenotypic variability respectively. For seedling stage, 21 markers in ten genomic regions located on wheat chromosomes 1B, 2A, 2B, 3A, 3B, 4B, 4D, 5A, 6B and 7B were associated with resistant. These loci may be useful for choosing parents and incorporating new resistance genes into locally adapted cultivars.

Tags:

Identification and characterization of winter wheat germplasm resistant to stem rust in Kenya and Turkey

BGRI 2018 Poster Abstract
Beyhan Akin International Maize and Wheat Improvement Center (CIMMYT), P.K. 39 Emek 06511 Ankara, Turkey
Nilufer,Akci, Sridhar, Bhavani, Mesut, Keser, Fatih, Ozdemir, Ruth, Wanyera, Alexey, Morgounov, , , , , , , , , , , , , , , , , ,

A diverse set of winter wheat germplasm was screened for resistance to stem rust in large-scale trials in Kenya and Turkey during 2009-16. The study aimed to select resistant material and characterize types of resistance and possible genes, as well as evaluate agronomic traits and resistance to other diseases to select superior variety candidates and parental lines. The study material was comprised of various Facultative and Winter Wheat Observation Nurseries (FAWWON), which are developed and distributed by the International Winter Wheat Improvement Program (www.iwwip.org) in Turkey. More than 1600 global accessions were screened, with most evaluated for two years. Based on stem rust data from Kenya, more than 400 genotypes were identified exhibiting adequate levels of resistance to the Ug99 race group. The highest number of resistant lines originated from IWWIP (~170), USA (~100), Russia (~40), Iran (~30), Romania (~20), and South Africa (~20). Material was also tested at two sites in Turkey: Haymana (artificial inoculation) and Kastamonu (natural infection). There was no significant correlation between stem rust severities in Kenya and in Turkey, due to differences in stem rust pathotypes. However, a set of germplasm (more than 100 entries) has been identified as resistant in both countries. This set represents promising material as variety candidates and parental lines; another study is currently identifying the genes controlling the stem rust resistance in this population. IWWIP distributed stem rust resistant germplasm to its global collaborators during 2010-2015, in response to the threat from the Ug99 race group. New resistant germplasm combining broad adaptation, high yields, and resistance to other diseases is available on request.

Tags:

Race analysis of Puccinia graminis f. sp. tritici led to identification of the new race TTKTK, affecting Sr31 and SrTmp, in Iran

BGRI 2018 Poster Abstract
Ramin Roohparvar Seed and Plant Improvement Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
Ali Omrani

The basidiomycetous fungus, Puccinia graminis f. sp. tritici (Pgt) causes stem rust disease as one of the most destructive wheat pathogens, worldwide. TTKSK and other Pgt races under Ug99 race group are considered as major threats to wheat production in east Africa and CWANA region by defeating the stem rust resistance gene Sr31, while its ineffectiveness was reported in Iran in 2007. Race TKTTF of Pgt caused a severe stem rust epidemic in southern Ethiopia in 2013, and was spread to Europe through 2016 Sicily outbreak. This research describes race identification of Iranian isolates collected during the widespread distribution of stem rust in 2014-16. Purified urediniospores of 123 Pgt isolates were separately inoculated on seedlings of 20 North American differential wheat cultivars carrying different Sr resistance gene/s. Infection types were recorded at 14 days post inoculation (dpi) using Stakman et al. 0-4 scale. Based on the letter code nomenclature, we identified the Pgt races TKTTF, TTTTF, TTKSK, TTKTK, PKTTF, TKSTF, PKSTF, PKTTC, PTRTF, PTTTF, PKSTC, TTRTF, TKSTC and PKRTF in Iran. TKTTF and TTTTF were determined as prevalent Iranian Pgt races. This is the first report of race TTKTK, a new variant of Ug99 race group with virulence on Sr31 and SrTmp resistance genes, in Iran. Since TTKTK primarily occurred in south west of Iran, the migration route for this new race seems to be similar to race TTKSK. The high race variation observed in this study could indicate a high genetic diversity among P. graminis f. sp. tritici populations in Iran, as a wheat center of origin.

Tags:

Gone with the wind: Revisiting stem rust dispersal between southern Africa and Australia

BGRI 2018 Poster Abstract
Botma Visser Department of Plant Sciences, University of the Free State, South Africa
Marcel Meyer, Robert Park, Christopher Gilligan, Laura Burgin, Matthew Hort, David Hodson, Zacharias Pretorius

Despite being 10,000 km apart, the current study emphasizes the potential vulnerability of Australia to wind-borne Puccinia graminis f. sp. tritici (Pgt) spore introductions from southern Africa. Of four Pgt introductions into Australia since 1925, at least two (races 326-1,2,3,5,6 and 194-1,2,3,5,6) are thought to have originated from southern Africa. Microsatellite analysis of 29 Australian and South African Pgt races confirmed close genetic relationships between the majority of races in these two geographically separated populations, thus supporting previously reported phenotypic similarities. Using Lagrangian Particle Dispersion Model simulations with finely-resolved global meteorological data over a 14-year period and a three-day urediniospore survival time, the study showed that long distance dispersal of Pgt from southern Africa to Australia is possible, albeit rare. Transmission events occurred most frequently from central South Africa, but were also possible from southern South Africa and Zimbabwe; while none occurred from a representative source-location in Tanzania. Direct dispersal incursions into both the western and eastern Australian wheat belts were feasible. Together, the genetic and simulation data strongly support the hypothesis that earlier introductions of Pgt into Australia occurred through long-distance wind-dispersal across the Indian Ocean. The study thus acts as a warning of possible future Pgt dispersal events to Australia which could include members of the Ug99 race group. This emphasizes the continued need for Pgt surveillance on both continents.

Tags:

Marker assisted backcross breeding for incorporation of rust resistance in Indian wheat varieties

BGRI 2018 Poster Abstract
Chandra Nath Mishra ICAR Indian Institute of Wheat and Barley Research, Karnal
Satish Kumar, Rekha Malik, Garima Singhroha, Vinod Tiwari, Gyanendra Pratap Singh

Breeding rust resistant cultivars using conventional methods is time-consuming, complex and slow, but molecular markers offer a rapid alternative for developing cultivars with improved disease resistance. Three wheat cultivars, DBW88, DBW107, and DBW110, from different production zones were used as recipients for incorporation of resistance genes using a marker-assisted backcross (MAB) breeding approach. Leaf rust resistance gene Lr32 is being incorporated into all the three varieties, stripe rust resistance gene Yr15 is being incorporated into DBW88 and DBW107, and stem rust resistance gene Sr26 is being added to variety DBW110. Lines PBW703 (Yr15), FLW15 (Lr32) and Avocet (Sr26) were used as donors. Six cross combinations viz., DBW88/PBW703, DBW107/PBW703, DBW88/FLW15, DBW107/FLW15, DBW110/FLW15 and DBW110/Sr26 were made at Karnal during 2015-16 and the crosses were grown at IIWBR-RS, Dalang Maidan for backcrossing. BC1F1 plants were raised at Karnal during 2016-17. Both foreground and background selections were practiced in each combination. SSR markers gwm264 and barc135 were used for foreground selection of Lr32, marker barc8 was used for selection of Yr15, and markers Sr26#43 and BE518379 were used to detect presence and absence of Sr26. From 90 to 127 polymorphic SSR markers chosen for each cross from an initial set of 800 screened on the parents are being used for background selection.

Tags:

Evaluation of Ethiopian wheat germplasm for resistance to four virulent Puccinia graminis f. sp. tritici races

BGRI 2018 Poster Abstract
Bekele Hundie Ethiopian Institute of Agricultural Research
Bedada Girma, Endale Hailu, Fikrte Yirga, Bekele Abeyo, Gordon Cisar, Gina Brown-Guedira, Erena Edae, Pablo Olivera, Matthew Rouse

In Ethiopia, breeding resistant wheat varieties is a priority for wheat rust management although new virulent rust races have periodically resulted in losses of R-genes, epidemic outbreaks, and yield losses of up to 100%. During 2014 and 2015, 160 wheat varieties and lines including five checks and 12 differential lines with known resistance genes were evaluated against four stem rust pathogen races at both seedling and adult plant stages. In the field at Kulumsa, Ethiopia, the lines were evaluated in four separate nurseries in an augmented design where each nursery was inoculated with a different Puccinia graminis f. sp. tritici race: TTKSK, TKTTF, TRTTF, and JRCQC. Kingbird, a check variety, displayed low average Area Under the Disease Progress Curve (AUDPC) (67 to 238) and Average Coefficient of Infection (ACI) (1.1 to 9.7) in response to the four races. Effect of lines possessing Sr24+Sr36 and Sr31+Sr36 resistance genes on rust development was comparable to Kingbird or even better. Likewise, 48, 34, 19 and 28 varieties and lines had lower or comparable AUDPC for TTKSK, TKTTF, TRTTF and JRCQC compared to Kingbird. Commercial bread wheat varieties Shorima, Huluka, Hogana, and advanced lines CIMMYT 14, ETBW7058, ETBW7101 and ETBW7258 for which Sr24/Lr24 was postulated, possessed AUDPC and ACI lower than Kingbird. However, all these lines possessed susceptible or intermediate seedling reactions to Sr24-virulent race TTKTT from Kenya at the seedling stage. CIMMYT 18 showed susceptibility to 3 races at seedling stage, but lower AUDPC and ACI than the checks except Kingbird, indicating adult plant resistance. However, this adult plant resistance was marginal in effect to race TKTTF. Resistance genes Sr2, Sr57/Lr34, Sr24/Lr24, Sr25/Lr19, Sr38/Lr37 and SrTmp were postulated at various frequencies in this germplasm. Seedling and adult plant resistance sources identified can be used for rust resistance breeding in Ethiopia.

Tags:

Contribution of peduncle traits to grain yield under terminal drought and compensatory effect of stem reserve mobilization

BGRI 2018 Poster Abstract
Dejan Dodig Maize Research Institute Zemun Polje
Dragana Ranćić, Vesna Kandić, Biljana Vucelić-Radović, Jasna, Savić, Miroslav Zorć

When environmental stress develops during reproductive phases of growth, wheat plants have to rely increasingly on remobilisation of previously stored assimilates to maintain grain filling. The present study was undertaken to determine the effect of several peduncle (the uppermost stem internode) morpho-anatomical and biochemical traits on grain weight, and to assess the contribution of the peduncle water-soluble carbohydrate (WSC) reserves shortly after anthesis to its variation. In 2-year field trials, 61 wheat genotypes were used (27 F4:5 families, 17 parents used for the crosses and the 17 current best standards) comparing intact control plants (CP) with plants that were defoliated (DP) by cutting off all leaf blades 10 days after anthesis to simulate terminal stress. Estimated contributions of peduncle assimilate reserves to grain weight/spike were from 0.06 to 0.31% and from 0.11 to 0.45% in CP and DP plants, respectively. High peduncle reserve mobilization efficiency, a longer exposed part of the peduncle and larger peduncle storage capacity (through higher parenchyma and/or lower lignified area) were of specific benefit for maintaining grain weight in defoliated plants. There was a large difference in compensation of grain yield loss by dry matter remobilization within studied genotypes (in average 1.2-36.1%). Although compensation of yield loss might be improved through breeding process (our F4:5 families had slightly higher mean compensation effect than their parents under moderate stress), it does not mitigate the effect of post-anthesis drought in great extent (up to 38.4%).

Tags:

Exploring genotypic variation and assessment of stress selection indices for some productive traits in bread wheat

BGRI 2018 Poster Abstract
Muhammad Ishaq Cereal Crops Research Institute (CCRI), Pirsabak Nowshera Khyber Pakhtunkhwa-Pakistan
Gulzar,Ahmad, Imtiaz, Muhammad, Khilwat, Afridi, , , , , , , , , , , , , , , , , , , , , , , ,

In the current scenario of climatic change, exploration and development of new stable genotypes performing better under stressed and non stressed environmental conditions is the priority of wheat breeders for exploiting genetic variability to improve stress tolerant cultivars. Late planting is one of the major abiotic stresses, seriously influencing wheat production. In the current study, twenty eight bread wheat genotypes were evaluated independently under normal (optimal) and late (stress) planting conditions at Cereal Crops Research Institute (CCRI), Pirsabak Nowshera Khyber Pakhtunkhwa Pakistan during 2013-14. Analysis of variance revealed highly significant (P < 0.01) differences among the genotypes, planting (sowing dates), and genotype ? sowing dates interactions effects for the studied traits. Generally, reduction in plant height (0.41 to 10.91%) and grain yield (0.36 to 53.35%) was observed among the tested genotypes under late planting as compared to normal (optimal) planting. Least % reduction in grain yield was recorded for genotypes BWL-23 (0.36%), BWL-4(0.76%), BWL-16(1.22%) and BWL-13 (1.78%) and were found tolerant to late planting stress as compared to check (Pirsabak-2008). Eight stress selection indices i.e. Mean productivity (MP), Tolerance (TOL), Geometric Mean Productivity (GMP), Harmonic mean (HM), Stress selection Indices(SSI), Stress Tolerance Index (STI), Yield Index (YI) and Yield Stability Index (YSI) were determined based on mean performance of genotypes evaluated under normal and late planting conditions. Analysis of correlation revealed that plant height and grain yield under normal and late planting conditions, had significant positive correlation with stress selection indices i.e. GM, HM, SSI and YI. These selection indices could be effective in identification of lines/ genotypes to late planting stress tolerant conditions. Based on MP, GMP, HM, STI and YI genotypes i.e. Pirsabak-2008, BWL-23 and BWL-27 were found late planting stress tolerant and could be recommended for sowing in both normal and late planting.

Tags:

Utilization of Jordanian durum wheat (Triticum turgidum ssp durum) landraces for crop improvement in dry areas

BGRI 2018 Poster Abstract
Ayed Al-Abdallat Faculty of Agriculture, The University of Jordan
Moneer Mansour, Nasab Rawashdah, Rabei Sayaydeh

Durum wheat (Triticum turgidum subsp. durum) landraces are rapidly disappearing from the main wheat production areas in the Fertile Crescent. Such local landraces are most likely contain geographically specific, ectopically adapted alleles or gene complexes for their harsh environments. A panel of 156 durum wheat landraces and released varieties were assembled from historical collections deposited in national and international gene banks and from a recent active collection mission from selected areas across Jordan. The panel were evaluated under field conditions in two different locations for one growing season. Data for days to heading, plant height, peduncle length, number of spikes spike length, spike weight, grains number, grains weight, number of kernels per spike and thousand-kernel weight were recorded. Results indicate the existence of a wide variation between the tested genotypes for all tested agronomical traits. For heading date, the Jordanian landrace "JDu103" was the earliest under dry environment conditions. Regarding grains weight and spike weight, the Jordanian landrace "JDu105" produced the highest mean value under humid conditions. Another landrace "JDu46" produced the longest spikes and the highest TKW mean value, while the Jordanian landrace "JDu105" produced the heaviest spikes weight mean value, while "JDu100" produced the highest grains number. For molecular analysis, total genomic DNA was extracted from each genotype and then used for SNP genotyping using Illumina iSelect wheat 90k SNP chip. Structure analysis showed that the analyzed durum wheat panel can be divided into three genetically distinct subgroups. The GWAS analysis identified 93 significant markers-traits associations for multiple traits with two QTLs located at 7A and 7B, which seems important for TKW in durum wheat under dry environments. In conclusion, the Jordanian landraces used in this study showed wide genotypic and phenotypic variability, which can be considered by plant breeders for their future use in breeding programs.

Tags:

Pages