All BGRI Abstracts

Displaying 11 - 20 of 415 records | 2 of 42 pages

Development of high yielding and disease resistant wheat cultivars by Cereal Crops Research Institute Pirsabak Nowshera after de

BGRI 2018 Poster Abstract
Gulzar Ahmad Cereal Crops Research Institute Pirsabak Nowshera, Pakistan
Khilwat Afridi, Muhammad Ishaq, Irfan Shah, Ibne Khalil, Masood Jan

The Cereal Crops Research Institute (CCRI) is situated on the left bank of River Kabul, near village Pirsabak, 3 km east of Nowshera at an elevation of 288 m above sea level on the intersection of 74? E longitude and 32? N latitude. In July 2010, a devastating flood destroyed all the available germplasm, machineries, laboratories, and field equipment. After the flood research activities were restarted with full motivation, dedication and hard work in collaboration with PARC, ICARDA, CIMMYT, and with the help of wheat productivity enhancement program (WPEP). Developed new population of wheat via spring x spring, spring x facultative germplasm to elevate genetic diversity and lines selected from segregating populations for high yield and rust resistance are at advanced stage of testing.

Since the flood, the CCRI developed four new wheat cultivars: Pirsabak-2013 Pakhtunkhwa-2015 for irrigated areas and Shahkar-2013 and Pirsabak-2015 for rainfed areas of Khyber Pakhtunkhwa, Pakistan. Varietal maintenance and seed production of the released varieties has been undertaken by the wheat breeding team effectively. The seed of these newly developed wheat cultivars was multiplied on fast track basis through pre-released seed multiplication and now these four varieties are the most popular cultivars of Khyber Pakhtunkhwa, Pakistan. Three new candidate wheat lines (PR-106, PR-110 and PR-112) have been submitted to provincial seed council for approval as new wheat cultivars for Khyber Pakhtunkhwa, Pakistan. Two new candidate lines i.e. PR-115 and PR-118 got first position in National Uniform Wheat Yield Trials (NUWYT) on the basis of grain yield during 2016-17 under irrigated and rainfed conditions, respectively.

Tags:

Economic impact of front line demonstrations on wheat in the Semi-Arid tropics of western Maharashtra, India

BGRI 2018 Poster Abstract
Vijendra Baviskar Agharkar Research Institute Pune
Vijendra Baviskar, Balgounda Honrao, yashavanthakumar kakanur, Vilas Surve, Deepak Bankar, Vitthal Gite, Ajit Chavan, Vijay Khade, Juned Bagwan, Shrikant Khairanar, Sameer Raskar

Frontline demonstrations (FLDs,) on wheat were conducted by Agharkar Research Institute, Pune, during last five rabi seasons from 2012-13 to 2016-17 at farmer's fields of Pune and Satara district under wheat growing area of semi-arid tropics of western Maharashtra, India. Before conducting FLDs, a group meeting held every year in the selected village and specific skill training had imparted to the randomly selected farmers regarding adoption of different improved aspects of cultivation. FLDs comprised of improved wheat varieties viz., MACS 6222, MACS 6478, MACS 3125 (d) and MACS 2971(dic) for Peninsular Zone of India. About 50 ha of FLDs on improved wheat varieties were conducted with active participation of 50 farmers covered an average of 10 farmers and 10 ha per year. Two recent varieties, MACS 6222 and MACS 6478 had shown higher grain yield, ranging between 15 to 55 per cent more over local check and farmer practice than all other FLDs. Recommended packages and practices of wheat FLDs gave higher value of yield, net return and high benefit cost ratio as compared to local check over the years of study. The study has revealed that five years mean extension gap of 4.48 to 9.67 q/ha and technology gap ranging between 11.00 to 22.22 q/ha depending on the variety during the period of study. Net returns of Rs. 63042/ha was observed from improved practice than in the farmer's practice of Rs. 50108/ha and with benefit cost ratio of 3.07 and 2.79 respectively. On average basis, the incremental benefit cost ratio was found as 2.83. In frontline demonstrations, the yield potential of wheat has been enhanced largely due to the increase in the knowledge of farming community and adoption of improved production techniques by farmers.

Tags:

Mining novel seedling stripe rust resistance from Vavilov's wheat landraces using conventional and modern genetic tools

BGRI 2018 Poster Abstract
Raghvendra Sharma QAAFI, The University of Queensland
Robert McIntosh, Peng Zhang, Sami Hoxha, Adnan Riaz, Burkhard Steuernagel, Brande Wulff, Evans Lagudah, Lee Hickey, Sambasivam Periyannan

Wheat is one of the most important staple food and agricultural crop cultivated worldwide. To meet the demands of the raising human population, global wheat production has to be increased which is however declined due to appearance of highly virulent strains of Puccinia striiformis f. sp. tritici (Pst) fungus causing stripe rust disease. Globally, the incidence of stripe rust is effectively managed through the deployment of host plant mediated genetic resistance. But as the resistance present in the current wheat cultivars are ineffective, new sources of resistance particularly from pathogen unexposed genetic resources are of urgent need to prevent stripe rust epidemics. Landrace collections with rich genetic diversity and being less exposed to prevalent pathogen are of valuable source for resistance to new pathogens. In this study, a total of 295 landrace accessions collected by the famous Russian botanist Vavilov was screened for stripe rust resistance using the two predominant lineage Pst strains of Australia. Six accessions with good resistance against the two aggressive Pst strains were selected for genetic characterization and for utilization in global wheat breeding. Characterisation of these novel resistance were undertaken using combination of conventional and advanced genetic tools. While the conventional approach involves the traditional map based gene cloning, the other tool is the recently identified rapid method based on mutagenesis, targeted gene capture and next generation sequencing called "MutRenSeq". Subsequently, the identified novel resistant traits were transferred into elite wheat cultivars through the combination of linked molecular markers and speed breeding techniques. Thus along with the identification of novel resistance, elite wheat cultivars with broad spectrum stripe rust resistance were also generated through the use state of art techniques to sustain global wheat production from the rapidly evolving stripe pathogens.

Tags:

Structural insights into impact of Y134F mutation and identification of fungicidal compounds against CYP51 in Puccinia triticina

BGRI 2018 Poster Abstract
Bharati Pandey Panjab University Chandigarh
Pradeep Sharma

Sterol 14?-Demethylase Cytochrome P450 (CYP51) protein involved in ergosterol biosynthesis pathways is a crucial target for efficient fungicidal compounds. However, the recognition mechanism and dynamic behavior of CYP51 in wheat leaf rust pathogen, Puccinia triticina is still obscure. Previously, a mutation at codon 134 (Y134F) was reported in five European isolates of P. triticina, the structural basis of this mutation remain unclear. To address this problem, CYP51 wild type protein and its variant proteins were successfully modeled using I-TASSER, an ab initio based structure prediction pipeline. To gain valuable insights into structure-function behavior for the binding wild-type and mutant-type proteins, individually generated protein models was subjected to 50ns molecular dynamics (MD) simulations run. Observably, this comparative protein-ligand interaction analysis and binding free energy results revealed that impact of mutation on the thermodynamics and conformational stability of the CYP51 protein is negligible. In present study, we carried out structure-based molecular docking and identified potent novel fungicidal compounds from four different databases and libraries. Consequently through MD simulation and thermodynamic integration, four novel compounds such as CoCoCo54211 (CoCoCo database),ZINC04089470(ZINC database), Allyl pyrocatechol 3,4 diacetate (Natural compound library) and 9-octadecenoic acid (Traditional Chinese Medicine database) has been predicted as potent fungicidal compound against CYP51 with XPGlidedocking score of -11.41, -12.52, -7.40 and -7.55 kcal/mol, respectively. These compounds were found to directly bond to heme group of CYP51, subsequently disturbing the stability and survival of fungus and can be used to control leaf rust in wheat.

Tags:

Allelism of resistance genes YrH52, YrG303 and Yr15 originating from different wild emmer sources

BGRI 2018 Poster Abstract
Valentina Klymiuk Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, Israel
Dina Raats, Lin Huang, Valeria Bocharova, Jorge Dubcovsky, Abraham Korol, Tzion Fahima

Wild emmer wheat (Triticum dicoccoides, (DIC)) is an important source of resistance to stripe rust due to presence of Puccinia striiformis in its natural habitats with high humidity and relatively low temperatures that are favorable for stripe rust development. Previously, we showed that DIC accessions from northern Israel were highly resistant to stripe rust. According to the rust responses of three DIC accessions (G25, H52, G303) and mapping of the resistance to relatively close, but different, genetic positions on chromosome 1BS, three different resistance genes were assumed to be present. However, the development of additional critical recombinants and new higher resolution genetic maps for these three genes in subsequent work led us to place YrH52 and YrG303 in the same genetic interval as Yr15, suggesting that the three putative genes are allelic or identical. The recent cloning of Yr15 allowed us to test this hypothesis using an EMS mutagenesis approach. We sequenced the Yr15 locus in five yrH52 and three yrG303 susceptible mutants and identified missense point mutations associated with the susceptible phenotype in each one. Thus, YrH52 and YrG303 may not be new genes. Further work is under way to determine if these genes are allelic or identical.

Tags:

Registration of 'Malika': A Bread Wheat Cultivar Developed through Doubled Haploid Breeding

BGRI 2018 Poster Abstract
Sripada Udupa ICARDA
Jamal El Haddoury, Ahmed Amri

Malika', a hard red spring wheat (Triticum aestivum L.) cultivar developed using doubled haploid technology by the Institut National de la Recherche Agronomique (INRA), Morocco, and tested as 06DHBW48, was approved for release in 2016 by the Office National de S?curit? Sanitaire des Produits Alimentaires (ONSSA), Morocco. Malika was selected from the doubled haploids derived from the cross 'Achtar3*//'Kanz'/Ks85-8-4). Achtar and Kanz are Moroccan varieties originating from segregating populations from CIMMYT. Achtar and Kanz are a well adapted to Moroccan conditions but susceptible to the Hessian fly, yellow rusts and some races of leaf rust. 'Achtar' was crossed with it in order to incorporate the Hessian fly resistance, yellow rust resistance and leaf rust resistance and 'Achtar' was crossed with Kanz/Ks85-8-4 having resistance to Hessian fly, yellow rust and leaf rust. Backcrossed 3 times with 'Achtar', and selected lines having resistance to the Hessian fly, yellow rust and leaf rust from the population derived from each backcross. Finally the selected the resistant line was used develop doubled haploids. The doubled haploid lines produced were tested in the laboratory and field for Hessian fly and the rust resistance. The resistant lines were incorporated in the multi-local yield trials and three promising lines with the resistance to Hessian fly, yellow rust and leaf rust and better yield and quality were submitted for registration in the official catalog in 2014. After 2 years of testing (years 2014-15 and 2015-16), one line (06DHBW48) was accepted for the registration and designated as 'Malika'. 'Malika' is a semi-dwarf variety, well adapted to semi-arid regions, early maturing, high yielding, tolerant to drought and resistant to Hessian fly, leaf rust and yellow rust.

Tags:

Characterization and genetic mapping of stem rust resistance in McNair 701 wheat

BGRI 2018 Poster Abstract
Thomas Fetch Agriculture & Agri-Food Canada
Colin Hiebert

Wheat cultivar McNair 701 carries resistance gene SrMcN and is used as a differential line to identify Pgt races using the international letter code nomenclature. The inheritance and location of the resistance gene has not been characterized. We developed a doubled haploid (DH) population from cross LMPG/McNair 701 to study the genetics and chromosomal location of SrMcN. A DH population inoculated with race QCCJB segregated 100 resistant : 94 susceptible, a 1:1 ratio (?2=0.186, P=0.666, NS) indicative of segregation at a single locus. This gene was mapped to chromosome 2DL using the Infinium 90k platform. The map position of SrMcN was similar to that of Sr54, one of two genes previously found in Norin 40. Comparison of stem rust seedling reactions using 12 diverse Pgt races indicated that McNair 701 and an Sr54 line derived from Norin 40 had an identical pattern of responses and similar low infection types (IT=12-) to races LCBNB and QCCJB. Based on the chromosomal location on 2DL and identical seedling responses to Sr54, it is likely that the resistance gene in McNair 701 formerly known as SrMcN is Sr54. This finding will be confirmed by a test of allelism.

Tags:

Incorporation of rust resistance (especially stem rust race Ug99) from rice to wheat through Wheat ? rice crossing

BGRI 2018 Poster Abstract
Javed Ahmad Wheat Research Institute, AARI, Faisalabad, Pakistan
Ghulam Mahboob Subhani, Makhdoom Hussain, Mehvish Makhdoom

Rust is the single largest factor limiting wheat production in Pakistan. According to the FAO reports, countries in the predicted immediate pathway of Ug99 grow more than 65 million hectares of wheat, accounting for about 25% of global wheat harvest.
Rice, a member of the same family (Poaceae) is not attacked by any rusts. Wheat, an allo-hexaploid is responsive for wide crossing. It has previously been successfully crossed with its several wild relatives and different other crop species like corn, pearl millet etc. Based on the above facts wheat ? wild rice crossing has been attempted to incorporate rust resistance from rice to wheat. Successful crosses were made under in-vitro conditions. Surviving plantlets developed from these crosses were assayed for any genetic material introgressed from rice. Different cytological / molecular techniques were used to detect the introgression (Squash preparations from root tips, FISH, GISH, SSR etc.). Two hundred and fifty primers specific to rice chromatin were used to look for the introgression of rice chromatin into hybrids. Seven primers amplified the fragments in hybrids indicating the possible introgression of rice chromatin in wheat x rice hybrids but in-situ hybridization didn't confirm that introgression. So further testing of these hybrids is needed.

Tags:

System biology to decipher regulatory network hubs that control Zymoseptoria tritici-wheat infection process

BGRI 2018 Poster Abstract
Sarrah Ben M'Barek Laboratory of Molecular Plant Physiology, Biotechnology Center of Borj Cedria (CBBC)
Mahmoud Gargouri, Hesham A.Y Gibriel, Richard B. Todd, Michael F. Seidl, Gerrit H.J. Kema

Septoria tritici blotch disease, caused by the fungus Zymoseptoria tritici, is a major threat to global wheat production. With the recent advances in high-throughput DNA-based technologies, Z. tritici has become a powerful model system for the discovery of candidate determinants that underlie virulence and host specialization. Although a few important virulence/regulatory genes have been identified, a global understanding of the larger regulatory network has not been developed. Therefore, to uncover the transcriptional regulatory networks of the infection cycle and most particularly the regulatory hubs that control the switch between the biotrophic and necrotrophic phases, we applied an integrated approach combining transcriptomics, proteomics, and metabolomics analyses based on the identification of plant and fungal transcription factors and regulators, which we characterized from the newly annotated genome sequence of the reference isolate IPO323 (Grandaubert et al., 2015) and using datasets from Rudd et al. (2015). Bread wheat transcription factors and regulators were identified by querying the proteome and subsequent categorization from the Plant Transcription Factor database (PTFDB). Similarly, Z. tritici transcription factors and regulators were identified and categorized using the PFAM TF family databases, and following fungal transcription factor rules as outlined by Todd et al. (2014) and rules we developed for fungal transcription regulators. Insights into transcription factors and regulators will enable synthetic biology approaches to alter the Z. tritici-wheat interaction and lead to rewiring of the regulatory networks thereby turning off the fungal infection process. Beyond providing insights into the regulatory systems-levels involved in Z. tritici-wheat interaction, we believe that our dataset and approach sets the stage for an emerging series of studies that will decipher the dynamic regulatory networks in other plant-pathogen interactions.

Tags:

Characterization of a diverse South American wheat panel to identify new leaf rust and stem rust resistance genes

BGRI 2018 Poster Abstract
Paula Silva INIA Uruguay and Dep. Plant Pathology, Kansas State University, US
Pierina Clerici, Richard Garcia, Fernando Pereira, Noelia Perez, Martin Quincke, Silvia German

Leaf rust (LR) and stem rust (SR) are threats to global wheat production and new races frequently overcome resistance genes deployed in wheat cultivars. Identification of new sources of resistance is a major goal for many pre-breeding programs. The objective of this study was to investigate the genetic basis of resistance to LR and SR in a diverse South American wheat panel. Molecular markers for known resistance genes and GBS were used to dissect genetic components. The wheat panel of 122 lines was characterized under field conditions at La Estanzuela Research Station, Uruguay, for disease severity (DS) to LR (2014 and 2015) and SR (2015), and LTN (leaf tip necrosis). Final DS for LR ranged between 0 and 95%, with mean values of 40% (2014) and 46% (2015). For SR, final DS ranged between 0 and 50%, with a mean value of 5%. The frequencies of positive diagnostic resistance markers among accessions were 20.5% for Lr34/Sr57, 6.6% for Lr68, 3.3% for Sr2/Lr27, 23% for Sr31/Lr26, 20.5% for Sr24/Lr24, 9.4% for Sr25/Lr19, and 0% for Sr39/Lr35. Of all the LR/SR resistance genes, only the effect of Lr68 was significant when predicting LR DS. Seventeen lines were identified with combinations of two genes, but no combination conferred a significantly improved level of resistance. Preliminary GWAS analysis for LR response on a subset of 86 lines revealed several QTLs, with a major QTL explained by Lr68. Lines with good levels of resistance to LR and SR, high expression of LTN, and absence of markers for the studied resistance genes were identified, indicating that there are other genes involved in resistance. Future research involving the testing of additional molecular markers for other known resistance genes, and a deeper GWAS analysis, will provide further information about the resistance genes present in this wheat panel.

Tags:

Pages