All BGRI Abstracts

Displaying 71 - 80 of 197 records | 8 of 20 pages

Status of wheat rust research and control in China

BGRI 2010 Plenary Abstract
Zhensheng Kang College of Plant Protection, Northwest A&F University, P.R. China
View kang_2010.pdf (284.43 KB)

In China, wheat is grown on approximately 24 million hectares with an annual yield of 100 million tonnes. Stem rust, caused by Puccinia graminis f. sp. tritici, is a threat mainly to spring wheat in northeastern China. Leaf rust, caused by P. triticina, occurs on crops in the late growth stages in the Yellow-Huai-Hai River regions. Stripe rust, caused by P. striiformis f. sp. tritici (Pst), is destructive in all winter wheat regions and is considered the most important disease of wheat in China. During the last 20 years, widespread stripe rust epidemics occurred in 2002, 2003, and 2009, and localized epidemics occurred in many other years. In recent years, major yield losses were prevented by widespread and timely applications of fungicides based on accurate monitoring and prediction of disease epidemics. A total of 68 Pst races or pathotypes have been identified using a set of 19 differential wheat genotypes. At present, races CYR32 and CYR33 virulent to resistance genes Yr9, Yr3b, Yr4b, YrSu and some other resistance genes are predominant. Moreover, these races are virulent on many cultivars grown in recent years. Of 501 recent cultivars and breeding lines 71.9% were susceptible, 7.0% had effective all-stage resistance, mostly Yr26 (= Yr24), and 21.2% had adult-plant resistance. Several resistance genes, including Yr5, Yr10, Yr15, Yr24/Yr26, YrZH84 and some unnamed genes, are still effective against the current Pst population. All have been widely used in breeding programs. Lines with one or more of Yr1, Yr2, Yr3, Yr4, Yr6, Yr7, Yr8, Yr9 and other unnamed resistance genes are susceptible to currently predominant races. Durable adult plant resistance sources are being increasingly used as parents in breeding programs. Progress has been made in genomics and population genetics of Pst, molecular mapping of resistance genes, and cytological and molecular mechanisms of the host-pathogen interactions involved in stripe rust.

Tags:

Implications of climate change for diseases, crop yields and food security

BGRI 2010 Plenary Abstract
Adrian Newton Scottish Crop Research Institute (SCRI), U.K.
View newton_2010.pdf (531.13 KB)

Accelerated climate change affects components of complex biological interactions differentially, often causing changes that are difficult to predict. Crop yield and quality are affected by climate change directly, and indirectly, through diseases that themselves will change but remain important. These effects are difficult to dissect and model as their mechanistic bases are generally poorly understood. Nevertheless, a combination of integrated modelling from different disciplines and multi-factorial experimentation will advance our understanding and prioritisation of the challenges. Food security brings in additional socio-economic, geographical and political factors. Enhancing resilience to the effects of climate change is important for all these systems and functional diversity is one of the most effective targets for improved sustainability.

Tags:

Rust-proofing wheat for a changing climate

BGRI 2010 Plenary Abstract
Sukumar Chakraborty CSIRO Plant Industry, Australia
View chakaborty_2010.pdf (360.95 KB)

This paper offers projections of potential effects of climate change on rusts of wheat and how we should factor in a changing climate when planning for the future management of these diseases. Even though the rusts of wheat have been extensively studied internationally, there is a paucity of information on the likely effects of a changing climate on the rusts and hence on wheat production. Due to the lack of published empirical research we relied on the few published studies of other plant diseases, our own unpublished work and relevant information from the vast literature on rusts of wheat to prepare this overview. Potential risks from a changing climate were divided into three major groups: increased loss from wheat rusts, new rust races evolving faster and the reduced effectiveness of rust resistances. Increased biomass of wheat crops grown in the presence of elevated CO2 concentrations and higher temperatures will increase the leaf area available for attack by the pathogen. This combined with increased speed of the pathogen’s life cycle, may increase the rate of epidemic development in many environments. Likewise, should the effects of climate change result in more conducive conditions for rust development there will also be a corresponding increase in the rate of evolution of new and presumably virulent races. The effectiveness of some rust resistance genes are influenced by temperature, crop development stage and even nitrogen status of the host. It is likely that direct and indirect changes on the host from climate change may influence the effectiveness of some of these resistance genes. Currently the likely effects of climate change on the effectiveness of disease resistance is not known and since disease resistance breeding is a long term strategy it is important to determine if any of the important genes may become less effective due to climate change. Studies must be made to acquire new information on the rust disease triangle to increase the adaptive capacity of wheat under climate change. BGRI leadership is needed to broker research on rust evolution and the durability of resistance under climate change.

Tags:

Genetic map of stem rust resistant gene Sr35 in T. monococcum

BGRI 2010 Poster Abstract
W. Zhang Department of Plant Sciences, University of California-Davis, USA

With the TTKS family of races virulent on most genes currently providing protection against stem rust worldwide, identifying, mapping, and deploying resistance genes effective against these races has become critical.  We present here a genetic map of Sr35.  Both parents of our diploid mapping population (DV92/G3116, 142 SSD lines) are resistant to TTKSK, but the population segregates for resistance to TRTTF (Yemen) and RKQQC (US). Race analysis suggests that G3116 carries Sr21 and DV92 both Sr21 and Sr35.  Resistance to TRTTF and RKQQC was mapped to a 6 cM interval on chromosome 3AmL between markers BF483299 and CJ656351.  This interval corresponds to a 178-kb region in Brachypodium which contains only 16 annotated genes and exhibits a small inversion (including 2 genes) and a putative insertion (2 genes) relative to rice and sorghum.  This map contains closely-linked markers to Sr35 and provides the initial step for this gene's positional cloning.

Tags:

Surveillance and race analysis of stem rust in Kenya for the years 2008 and 2009

BGRI 2010 Poster Abstract
Ruth Wanyera KALRO-Njoro, Kenya

Limited but targeted stem rust race characterization was undertaken in Kenya in 2004 and 2005 which led to the detection of Ug99 present in Kenya and designation of Ug99 as race TTKS (based on North American stem rust race nomenclature system). Further surveillance in 2006 and 2007 detected variants of TTKS with virulence on Sr24 (TTKST) and Sr36 (TTTSK), respectively. Stem rust surveillance was undertaken at an extended level in 2008 and 2009 within predominant wheat growing regions of Kenya. Three hundred and sixty farms were surveyed from regional districts of Naivasha, Narok, Nakuru, Laikipia, Meru, Uasin-Gishu, Nandi, Elgeyo and Trans-Nzioa, during 2008 main season (May to September and December). The information from farmers indicated that more than 95% of these farms were sprayed with fungicides. Despite the use of fungicides, stem rust was detected in 67% of the surveyed farms. Stem rust ranged from trace amount -100% in severity with minimum infection in Naivasha district (40%) and maximum in Narok district (90%). Yellow rust was detected in 22% of the farms. Out of one hundred and twenty-six stem rust samples collected, 37 and 39 (a total of 76 ) samples were sent to Cereal Disease Laboratory (CDL) Minnesota, USA and Cereal Research Laboratory of Agriculture and Agri-Food Canada respectively, for race typing using the respective differentials used by these labs. From the 39 collections sent to Canada, 17 (43%) survived, of which majority were typed to TTKST (65%) followed by TTKSK (18%), PTKST (12%) and mixture of TTKST and TTKSK (5%). The CDL typed vast majority of pathotypes as TTKSK (84%) followed by TTKST and TTTSK (7% each). The combined results of two labs indicated that predominant frequency in Kenya in 2008 was TTKSK (51%) followed by TTKST (31%), PTKST (6%) and TTTSK (6%). The frequency of TTKST significantly increased in 2008 compared to 2007 which is not surprising, given that Sr24 carrying wheat cultivar KS Mwamba is cultivated on large acreage in Kenya. In 2009, 262 farms were surveyed from regional districts of Narok, Laikipia, Nyandarua, Meru, Uasin-Gishu, Nandi, Elgeyo and Trans-Nzioa. The 2009 season experienced heavy drought in many areas. Nevertheless, stem rust was detected in 79% of the farms with disease severity ranging from trace to 100%. Yellow rust was detected in 15% of the farms. Stem rust infection ranged from 0 to 100% with minimum infection in Nyandarua (18%), Laikipia (42%) and maximum in Uasin-Gishu and Elgeyo (100% each). Out of seventy-four stem rust samples collected, 55 samples were sent to Canada for race typing. Only 20% of the samples survived, of which majority were typed to TTKST (50%), PTKST (34%) and PTKSK (16%). Borlaug Global Rust Initiative 2010 Technical Workshop / Poster Abstracts 7 The 2009 results did not depict real situation of predominance of pathogenic variability because of small sample size, however it provided fair indication that race TTKST is still the most prevalent. This information generated on the distribution of stem rust races, and the incidence of stem rust is important for anticipatory breeding and release of cultivars with effective sources of resistance in Kenya, and at same time mitigating global threat of stem rust by reducing intensity of stem rust inoculum in East Africa.

Tags:

Association mapping of rust resistance in pre-green revolution wheat accessions

BGRI 2010 Poster Abstract
Urmil Bansal The University of Sydney, Plant Breeding Institute, Australia

Association mapping detects correlations between genotypes and phenotypes in a sample of individuals based on the linkage disequilibrium and can be used to uncover new genetic variation among germplasm collections. Two hundred and five landraces collected by the English botanist A. Watkins in the 1920s were screened for rust response variation under field conditions during three crop seasons. An integrated map of 350 polymorphic DArT markers was developed. Association mapping identified the involvement of several genomic regions in controlling resistance to three rust diseases. Seven, eight and nine genomic regions, respectively, appeared to carry yet uncharacterized leaf rust, stripe rust and stem rust resistance. Three dimensional analyses indicated genetic association of leaf rust and stripe rust resistance in some accessions, whereas no such association was observed between stem rust resistance and resistance to either of the other two rust diseases. A new stripe rust resistance locus, Yr47, has been named. 

Tags:

Cytogenetic manipulation to enhance the utility of alien resistance genes

BGRI 2009 Plenary Abstract
Mike Pumphrey Department of Crop and Soil Sciences, Washington State University, USA
View pumphrey_2009.pdf (236.58 KB)

Although many wild relatives in the Triticeae tribe have been exploited to transfer stem rust resistance genes to wheat, the derived germplasms have often not been immediately useful in wheat breeding programs. Too frequently, large chromosome segments surrounding desirable genes also harbor deleterious genes that result in unacceptable yield or quality. Recombination between chromosomes of wheat and chromosomes of distant relatives is very rare due to genetic restrictions on chromosome pairing in polyploid wheat. However, chromosome pairing can be manipulated by utilizing mutant stocks that relax this tight genetic control. The ph1b mutant produced by E.R. Sears over 30 years ago is an invaluable chromosome engineering tool, readily employed in the age of high-throughput molecular genetics. Shortened translocations have already been produced for stem rust resistance genes Sr26 and SrR using ph1b-induced homoeologous recombination. We are currently using induced-homoeologous recombination to reduce the sizes of alien chromosome segments surrounding TTKSK-effective genes Sr32, Sr37, Sr39, Sr40, Sr43, Sr47, SrTt3, Sr2S#1 and SrAeg5 to eliminate linkage drag putatively associated with these genes. Additional TTKSK-effective genes Sr44, SrHv6, SrAsp5, and SrAse3 were first targeted for development of compensating translocation stocks and then for shortening the size of each alien segment. Population development is also underway to characterize several potentially new sources of resistance.

Tags:

Cloned rust resistance genes and gene based molecular markers in wheat: Current status and future prospects

BGRI 2009 Plenary Abstract
Kota CSIRO Plant Industry, Australia
View kota_2009.pdf (109.62 KB)

Two broad categories of resistance genes in wheat have been described. One group represents the so called seedling resistance or the ‘gene for gene’ class that often provides strong resistance to some but not all strains of a rust species. The other category referred to as adult plant resistance provide partial resistance that is expressed in adult plants during the critical grain filling stage of wheat development. A few seedling rust resistance genes have been cloned in wheat and other cereals and are predominantly from the nucleotide binding site/leucine rich repeat class which is associated with localized cell death at the pathogen entry site. Until recently, the molecular basis of race non-specific, partial and slow rusting adult plant resistance genes were unknown. Gene products that differ from known plant resistance genes were revealed from the recent cloning of the Yr18, Yr36 and Lr34 adult plant genes in wheat. The available range of diverse resistance gene sequences provide entry points for developing genebased markers and will facilitate selection of germplasm containing unique resistance gene combinations.

Tags:

Molecular-genetic dissection of rice nonhost resistance to wheat stem rust

BGRI 2009 Plenary Abstract
Michael Ayliffe CSIRO Plant Industry, Australia
View ayliffe_2009.pdf (244.47 KB)

Rust diseases remain a significant threat to the production of most cereals including wheat. New sources of resistance are continually sought by breeders to combat the emergence of new pathogen races. Rice is atypical in that it is an intensively grown cereal with no known rust pathogen. The resistance of rice to cereal rust diseases is referred to as nonhost resistance (NHR), a resistance mechanism that has only recently become genetically tractable. In this report, the mechanisms of rice NHR to wheat stem rust and other cereal rust diseases are explored and the potential for transferring this durable disease resistance to wheat is considered. Approaches being undertaken for the molecular-genetic dissection of rice NHR to rust are described.

Tags:

Screening for stem rust resistance in East Africa

BGRI 2009 Plenary Abstract
Davinder Singh The University of Sydney, Plant Breeding Institute, Australia
View dsingh_2009.pdf (264.88 KB)

The East Africa program of the Borlaug Global Rust Initiative (BGRI) was launched to reduce the scale and scope of wheat stem rust epidemics in Kenya and Ethiopia, and to mitigate the global threat of virulent and dangerous rust races originating from this region. Since the launch in 2005, the screening facilities in Kenya and Ethiopia have helped to determine the extent of the world’s vulnerability to stem rust race Ug99 and its variants, identify diverse sources of resistance including adult plant resistance based on minor genes, and catalyze a comprehensive global response, leading to expanded awareness, expanded research and breeding activities, and resource mobilization. This paper reviews the role and achievements of the eastern African screening facilities along with the opportunities and challenges faced by the facilities during the ongoing global response to the emergence of Ug99 and its variants.

Tags:

Pages