All BGRI Abstracts

Displaying 1 - 10 of 417 records | 1 of 42 pages

Stem rust resistance in durum wheat

BGRI 2018 Poster Abstract
Pablo Olivera University of Minnesota
Ayele Badebo, Worku Bulbula, Matthew Rouse, Yue Jin

Our research objective is to identify new resistance genes in durum wheat that are effective against TTKSK and other significant stem rust pathogen races that could be utilized in durum breeding. We characterized 8,000 accessions for stem rust response in the field (Debre Zeit, Ethiopia, and St. Paul, MN). Accessions with resistant to moderately resistant responses in multiple field evaluations were evaluated at the seedling stage for resistance to races TTKSK, TRTTF, TTTTF, JRCQC, TKTTF, and six representative U.S. races. We identified 438 durum accessions resistant to moderately resistant in all field evaluations. Among the field-resistant accessions, 273 were resistant to all races used in seedling evaluations. Accessions susceptible at the seedling stage are being evaluated for the presence of adult plant resistance genes. The highest frequencies of resistant lines include landraces from East and North Africa (Ethiopia and Egypt) and advanced breeding lines and cultivars from North America (Mexico and USA). DNA markers will be performed to identify the presence of durum stem rust resistance genes, including Sr13, Sr8155B1, Sr11, and Sr8a. Nineteen resistant accessions were selected to investigate the genetics of TTKSK and TRTTF resistance. Results from evaluating F2 and F2:3 generations from biparental crosses revealed that resistance to race TTKSK was conferred mostly by one or two genes with dominant and recessive actions. Additional resistance genes were identified when populations were evaluated against race TRTTF. A bulk segregant analysis approach is being used to map the resistance in selected lines using the 90K SNP platform.

Tags:

Study of the effect of planting date on the severity of yellow rust disease on bread wheat in northeastern Syria

BGRI 2018 Poster Abstract
Omran Youssef University of Hohenheim, Germany
Afrem,Issa, Helim, Youssef, Nawzad, Suleiman, Abdul Rahman, Issa, , , , , , , , , , , , , , , , , , , , , ,

Wheat is grown in Syria during the November-December. Wheat is exposed to many strains that negatively affect its productivity especially rust diseases, which was reported on wheat in Syria for many years and the most severe in 2010, Therefore, we studied the effect of planting dates on the severity and development of yellow rust disease. Where the field trials of the 2010-2011 season were carried out at the two locations in northeastern of Syria: Al-Qamishli Research Center and Yanbouh Research Station in Al-Malekia. By cultivating the susceptible bread wheat Cham 8, where six dates were planted starting from 02.10. 2010, a difference of 15 days. The results showed there was a difference in the severity of the yellow rust disease according to the dates of cultivation and thus the stages of growth in the plant and this was evident in the Yanbouh location where the onset of the onset of injury on 08.04.2011 in the all dates and developed the infection to 40S degrees and 30%. Also, on the 24. 04. 2011, the infection was recorded at the Qamishli location only on the third and fourth dates. The disease did not develop more than 10S and 10% due to climatic conditions due to rain and high temperature during the season. The results showed a positive correlation between the evolution of the disease and vegetative growth of plants, where the growth of plants was more active at the site of Yanbouh, especially in the second, third and fourth dates in the development of infection on plants in the rest of the dates because of weak and slow growth of plants.

Tags:

Development of bread wheat cultivars for resistance to stem rust for cultivation in north zone of Iran

BGRI 2018 Poster Abstract
Manoochehr Khodarahmi Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
Kamal Shahbazi, Jabbar Alt Jafarby, Mohammad Sadegh Khavarinejad, Farzad Afshari, Farshad Bakhtiar, Habibollah Soghi

In this project to obtain resistant wheat breeding lines/cultivars to stem rust disease, new cultivars and lines of the north breeding program were evaluated in greenhouse with races collected in 2014 from northern regions of Iran, Moghan and Gorgan. Artificial inoculation in greenhouse indicated none of the races had virulence on Sr11, Sr13, Sr24, Sr25, Sr26, Sr27, Sr29, Sr31, Sr32, Sr33, Sr37, Sr39, Sr40, and SrTmp. In order to evaluate seedling resistance, 143 wheat cultivars and new lines under greenhouse conditions were inoculated with four isolates of stem rust in four separate experiments in a randomized complete block design with three replications. Evaluation of the northern germplasm under greenhouse conditions showed that some of the genotypes were resistant against all four isolates. The resistance of some of these new lines was also confirmed in Kenya. Regarding other desirable agronomic characteristics, some of these lines will be introduced as new cultivars in the northern region of Iran.

Tags:

Genomic scan in durum wheat reveals regions controlling adaptation to the heat-prone conditions of the Senegal River

BGRI 2018 Poster Abstract
Amadou Tidiane Sall ICARDA
Filippo,Bassi, Rodomiro, Ortiz, Ibrahima, Ndoye, AbdelKarim, Filali-Maltouf, Bouchra, Belkadi, Miloudi, Nachit, Michel, Baum, Hafssa, Kabbaj, Habibou, Gueye, Madiama, Cisse, , , , , , , , , ,

Wheat is a major food crop in West Africa, but its production is significantly affected by severe heat. Unfortunately, these types of high temperatures are also becoming frequent in other regions where wheat is commonly grown. In an attempt to improve durum wheat tolerance to heat, a collection of 287 elite breeding lines, including several from both ICARDA and CIMMYT, was assessed for response to heat stress in two irrigated sites along the Senegal River: Fanaye, Senegal and Kaedi, Mauritania during 2014-2015, and 2015-2016 winter seasons. The maximum recorded grain yield was 5t ha-1, which was achieved after just 90 days from sowing to harvesting. Phenological traits (heading, maturity and grain filling period) and yield components (1000-kernel weight, spike density and biomass) had also large phenotypic variation and a significant effect on grain yield performance. This panel was genotyped by 35K Axiom to generate 8,173 polymorphic SNPs. Genomic scans identified a total of 34 significant association between single nucleotide polymorphisms (SNPs) and traits across the four environments, including 15 related to phenological adaptation, 12 controlling grain yield components, and seven linked to grain yield per se. The identification of these genomic regions can now be used to design targeted crosses to pyramid heat tolerance quantitative trait loci (QTL), while the SNPs underlying these QTL can be deployed to accelerate selection process facilitated by DNA-aided breeding.

Tags:

EMS derived changes in susceptibility to P. triticina in wheat.

BGRI 2018 Poster Abstract
John Fellers USDA-ARS HWWGRU
,, , , , , , , , , , , , , , , , , , , , , , , , , , , ,

P. triticina has a biotrophic relationship with wheat and needs certain elements from the wheat host for a successful life cycle. In recent years, several long lasting, minor resistance genes have been cloned, and their function suggests that the resistance is not due to a classic NB-LRR gene, but a gene that functions in a biotrophic pathway. The hypothesis was proposed that modification of a susceptibility gene can provide broad, long lasting resistance. To test this hypothesis, Thatcher was treated with EMS and screened for changes in susceptibility. M5 lines were evaluated in the greenhouse with BBBD Race 1 and 5 lines were identified. Also, M5 lines were planted in the field to verify the resistance and test the resistance effectiveness to natural infections of P. triticina. The same five lines were resistant in the field. Resistance ranged from few pustules, a race specific-like reaction, lesion mimics with few or no pustules, and near immunity. These lines were backcrossed to Thatcher, and resistant F2 plants were bulked and sequenced. Gene candidates will be identified and discussed.

Tags:

Economic impact of front line demonstrations on wheat in the Semi-Arid tropics of western Maharashtra, India

BGRI 2018 Poster Abstract
Vijendra Baviskar Agharkar Research Institute Pune
Vijendra,Baviskar, Balgounda, Honrao, yashavanthakumar, kakanur, Vilas, Surve, Deepak, Bankar, Vitthal, Gite, Ajit, Chavan, Vijay, Khade, Juned, Bagwan, Shrikant, Khairanar, Sameer, Raskar, , , , , , , ,

Frontline demonstrations (FLDs,) on wheat were conducted by Agharkar Research Institute, Pune, during last five rabi seasons from 2012-13 to 2016-17 at farmer's fields of Pune and Satara district under wheat growing area of semi-arid tropics of western Maharashtra, India. Before conducting FLDs, a group meeting held every year in the selected village and specific skill training had imparted to the randomly selected farmers regarding adoption of different improved aspects of cultivation. FLDs comprised of improved wheat varieties viz., MACS 6222, MACS 6478, MACS 3125 (d) and MACS 2971(dic) for Peninsular Zone of India. About 50 ha of FLDs on improved wheat varieties were conducted with active participation of 50 farmers covered an average of 10 farmers and 10 ha per year. Two recent varieties, MACS 6222 and MACS 6478 had shown higher grain yield, ranging between 15 to 55 per cent more over local check and farmer practice than all other FLDs. Recommended packages and practices of wheat FLDs gave higher value of yield, net return and high benefit cost ratio as compared to local check over the years of study. The study has revealed that five years mean extension gap of 4.48 to 9.67 q/ha and technology gap ranging between 11.00 to 22.22 q/ha depending on the variety during the period of study. Net returns of Rs. 63042/ha was observed from improved practice than in the farmer's practice of Rs. 50108/ha and with benefit cost ratio of 3.07 and 2.79 respectively. On average basis, the incremental benefit cost ratio was found as 2.83. In frontline demonstrations, the yield potential of wheat has been enhanced largely due to the increase in the knowledge of farming community and adoption of improved production techniques by farmers.

Tags:

Innovative manufacturing of a cereal rust inoculation device

BGRI 2018 Poster Abstract
Zak Pretorius University of the Free State
Gerrie,Booysen, Willem, Boshoff, Jozua, Joubert, , , , , , , , , , , , , , , , , , , , , , , ,

Urediniospores of rust fungi can be applied to cereal plants in several ways. Depending on the objective and available infrastructure, plants can be inoculated with a suspension of spores in either water, light mineral oil (e.g. Soltrol 130?) or engineered fluid (e.g. Novec 7100?). Alternatively, dry spores can be allowed to settle on plant surfaces by dusting or directly applied with a spatula or small brush. Several rust laboratories employ a system where a spore-oil suspension, contained in a gelatin capsule, is sprayed onto seedling leaves by means of a dedicated atomizer connected to an air pressure source. Although this approach is easy to use and highly efficient, the devices are not commercially available in South Africa. Locally, these inoculation appliances need to be manufactured by a conventional milling process that requires a specialized workshop and skilled personnel. This subtractive process is labour intensive and greatly prohibitive in terms of costs. Using a process called Additive Manufacturing (AM), also known as "3D printing", the body of an inoculator was digitally designed and then laser sintered in nylon. Loose powder was removed from flow channels by compressed air. A copper tube fitted afterwards connected the nylon body with the spore suspension in the capsule. Replicated inoculation tests of wheat seedlings with urediniospore bulks or single pustule collections of Puccinia triticina and P. graminis f. sp. tritici resulted in consistent levels of rust severity and infection frequency. Cleaning of inoculators in acetone for 1 min followed by a 1 h heat treatment at 60?C produced no contaminant infection in follow-up tests. The design has been registered in South Africa, the USA and Europe.

Tags:

Introgression of the coupled Sr2/Fhb1 for resistance to stem rust and Fusarium head blight into Uruguayan elite wheat cultivars

BGRI 2018 Poster Abstract
Miguel Raffo Instituto Nacional de Investigaci?n Agropecuaria (INIA)
Clara,Pritsch, Gustavo, Azzimonti, Silvia, Pereyra, Mart?n, Quincke, Victoria, Bonnecarrere, Paula, Silva, Ariel, Castro, Bettina, Lado, Silvina, Bar?ibar, Richard, Garc?a, Silvia, Germ?n, , , , , , , ,

Stem rust (SR) and Fusarium head blight (FHB) threaten the sustainability of wheat production worldwide. Sr2 is a widely used gene conferring partial, but durable, resistance to SR. Fhb1 confers a significant level of FHB resistance, but is poorly represented in the INIA-Uruguay wheat-breeding program. Sr2 and Fhb1 are linked in repulsion (~3 cM apart) on chromosome 3B. However, lines with Sr2 and Fhb1 in coupling were recently developed at the University of Minnesota, USA (kindly provided by J. Anderson). In order to incorporate Sr2/Fhb1 into Uruguayan elite wheat cultivars the donor line was crossed and backcrossed with four cultivars lacking both genes and expressing an intermediate to low level of resistance to SR and FHB: G?nesis 2375, G?nesis 6.87, INIA Madrugador, and INIA Don Alberto. Genotypes carrying Sr2/Fhb1 were selected using molecular marker UMN10; 250 BC2F1 were obtained for each recurrent parent. BC3F1 plants positive for UMN10 will be selected. The effect of Sr2/Fhb1 on response to SR and FHB in the different genetic backgrounds will be quantified by comparing disease severities of BC3F2 homozygotes with and without the UMN10 marker. Hopefully the introduction of Sr2/Fhb1 will contribute in reducing the risk of SR and FHB in wheat crops in Uruguay.

Tags:

Structural insights into impact of Y134F mutation and identification of fungicidal compounds against CYP51 in Puccinia triticina

BGRI 2018 Poster Abstract
Bharati Pandey Panjab University Chandigarh
Pradeep,Sharma, , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Sterol 14?-Demethylase Cytochrome P450 (CYP51) protein involved in ergosterol biosynthesis pathways is a crucial target for efficient fungicidal compounds. However, the recognition mechanism and dynamic behavior of CYP51 in wheat leaf rust pathogen, Puccinia triticina is still obscure. Previously, a mutation at codon 134 (Y134F) was reported in five European isolates of P. triticina, the structural basis of this mutation remain unclear. To address this problem, CYP51 wild type protein and its variant proteins were successfully modeled using I-TASSER, an ab initio based structure prediction pipeline. To gain valuable insights into structure-function behavior for the binding wild-type and mutant-type proteins, individually generated protein models was subjected to 50ns molecular dynamics (MD) simulations run. Observably, this comparative protein-ligand interaction analysis and binding free energy results revealed that impact of mutation on the thermodynamics and conformational stability of the CYP51 protein is negligible. In present study, we carried out structure-based molecular docking and identified potent novel fungicidal compounds from four different databases and libraries. Consequently through MD simulation and thermodynamic integration, four novel compounds such as CoCoCo54211 (CoCoCo database),ZINC04089470(ZINC database), Allyl pyrocatechol 3,4 diacetate (Natural compound library) and 9-octadecenoic acid (Traditional Chinese Medicine database) has been predicted as potent fungicidal compound against CYP51 with XPGlidedocking score of -11.41, -12.52, -7.40 and -7.55 kcal/mol, respectively. These compounds were found to directly bond to heme group of CYP51, subsequently disturbing the stability and survival of fungus and can be used to control leaf rust in wheat.

Tags:

Genomic regions influencing yield stability in durum

BGRI 2018 Poster Abstract
MERYEM ZAIM University of Mohammed V/ICARDA
HAFSSA,KABBAJ, AYED, AL ABDALLAT, GREGOR, GORJANC, JESSE, POLAND, MIKAEL, MILOUDI NACHIT, AHMED, AMRI, BOUCHRA, BELKADI, KARIM, FILALI MALTOUF, FILIPPO, BASSI MARIA, , , , , , , , , , , ,

Durum wheat (Triticum durum Desf.) is a major stable crop and it represents a base of the Mediterranean diet. This region is subject to a Mediterranean climate, which is extremely unpredictable with severe changes in moisture and temperature occurring each crop season. This unpredictability is summarized by breeders as GxE and the identification of traits controlling this interaction is quintessential to ensure stability in production season after season. To study the genetics of yield stability, four RILs populations derived from elite x elite crosses were assessed for yield and 1,000-kernel weights across five diverging environments in Morocco and Lebanon. These 550 RILs were characterized with 4,909 polymorphic SNPs via genotyping by sequencing. A consensus map was derived by merging the individual genetic maps of each population. Finally, imputation was used to fill all the missing haplotypes and reach a reduction of missing data to below 8%. Several significant QTLs were identified to be linked to TKW, grain yield and a stability index, namely AMMI wide adaptation index (AWAI). A second approach to identify loci controlling stability was the use of a global panel of 288 elites, accessions and landraces tested in 15 diverging environment. Multi-locations data were compiled via GxE models to derive the AWAI stability index. In addition, this panel was characterized with 8,173 polymorphic SNPs via Axiom 35K array. Significant associations were identified for all traits, including QTLs unique to AWAI. The sum of the identified QTLs can now be pyramid via marker assisted selection and molecular designed crosses in order to obtain very stable cultivars.

Tags:

Pages